Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Breaking up the Superbugs’ Party

Published: Friday, August 16, 2013
Last Updated: Friday, August 16, 2013
Bookmark and Share
The fight against antibiotic-resistant superbugs has taken a step forward thanks to a new discovery by scientists.

A BBSRC-funded multi-disciplinary research team at the University's Centre for Biomolecular Sciences has uncovered a new way of inhibiting the toxicity and virulence of the notorious superbug, Pseudomonas aeruginosa.

These bacteria are resistant to many conventional antibiotics. It is almost impossible to eradicate P. aeruginosa from the lungs of people with cystic fibrosis and is therefore a leading cause of death among sufferers. The bug also causes a wide range of infections particularly among hospital patients.

The new discovery concerns the bacterial cells' ability to 'talk' to each other by producing and sensing small chemical signal molecules. This is called 'quorum sensing' (QS) and enables a population of individual bacteria to act socially rather than as individuals. QS allows a population of bacteria to assess their numerical strength and make a decision only when the population is 'quorate'.

The mechanism through which QS signals work is by activating gene expression upon interaction of a QS signal molecule with a receptor protein. In many disease-causing bacteria, QS controls genes which are essential for infection. These genes code for virulence factors such as toxins which cause damage to host tissues and the immune system. Interfering with the QS signalling process blocks bacterial virulence and renders bacteria unable to cause infection. Consequently QS systems are molecular targets for the development of new anti-infective drugs which do not kill bacteria but instead block their ability to cause disease.

In a study published in the journal, PLOS Pathogens, the Nottingham team has described how they solved the 3D structure of a receptor protein called PqsR used by P. aeruginosa to sense alkyl quinolone QS signal molecules so that they could visualize the shape of the QS signal molecule-binding site within the PqsR protein.

Professor of Molecular Microbiology, Paul Williams, said: "We were able to synthesize and screen a library of chemical compounds which could fit within the PqsR binding site and block receptor activation by the QS signal molecules. The active compounds were screened for their ability to inhibit QS and through a process of chemical refinement some novel potent QS inhibitors were discovered which were tested biologically on P.aeruginosa and shown to block virulence gene expression."

Professor of Macromolecular Crystallography, Jonas Emsley, added: "This ground-breaking work establishes a platform for the future evaluation and further development of these new QS inhibitor compounds as potential drugs for the treatment of P. aeruginosa infections."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Drugs Used to Treat Lung Disease Work With the Body Clock
Scientists from The University of Manchester have discovered why medication to treat asthma and pneumonia can become ineffective.
Thursday, August 14, 2014
Prions, vCJD and the Immune System Relay
BBSRC is helping to shed new light on variant Creutzfeldt-Jakob disease.
Friday, December 06, 2013
Researchers Have a Nose for How Probiotics Could Affect Hay Fever
A study has shown that a daily probiotic drink changed how cells lining the nasal passages of hay fever sufferers reacted to a single out-of-season challenge.
Thursday, November 28, 2013
New Technique for Developing Drugs
An international team of researchers have created a new drug for possible use against heart disease, inflammation and other illnesses.
Monday, November 18, 2013
£60,000 Competition to Recognise Innovative Scientists Launched by BBSRC
Innovator of the Year 2014 competition launched by BBSRC to recognise and reward scientist's whose excellent science and innovations are delivering real world impact.
Friday, July 12, 2013
Scientific News
Gut Bacteria Older than Human Species
Some bacteria have lived in the human gut since before we were human, suggesting evolution could have a larger role inhuman bacterial makeup.
Evidence of Mosquito Transmitting Zika
A direct link between the Yellow fever mosquito and Zika transmission has been found following investigation into selective mosquito control.
Antibody-Based Drug for Multiple Sclerosis
New antibody-based drug paves the way for new strategies for controlling and treating multiple sclerosis.
Three-Drug Combinations Counter Antibiotic Resistance
Research shows that combinations of three different antibiotics can treat resistant bacteria, even if they are ineffective independently.
Mapping Zika’s Routes to Developing Fetus
UC researchers show how Zika virus travels from a pregnant woman to her fetus, and also identified a drug that could stop it.
Treating HIV with Cancer-Fighting Gene Shows Promise
A type of gene immunotherapy that has shown promising results against cancer could also be used against HIV.
Protein Teams Activate T-Cells
Caltech researchers have discovered T-cell genetic switching is controlled by four proteins acting in a multi-tiered fashion.
'Antigen-Presenting Cell' Defends Against Cancer
Through advanced imaging, researchers have identified cells that encourages increases in immune system cancer defences.
Zika Epidemic Likely to End Within Three Years
A team of scientists has predicted that the current Zika epidemic is likely to end within three years because there will be too few people left to infect.
Go-Between Immune Cell is Key to Priming the Body’s Fight Against Cancer
‘Antigen-presenting cell’ activates T cells by alerting them to the presence of tumors.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!