Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Novel Mechanism Discovered in First Line of Immune Defence

Published: Tuesday, September 10, 2013
Last Updated: Tuesday, September 10, 2013
Bookmark and Share
Discovery opens doors to developing new therapies to eradicate tumour cells and combat infections.

Scientists from A*STAR's Singapore Immunology Network (SIgN) have discovered a new defense mechanism that the immune system utilises to combat infections. The team's discovery of how a novel protein unexpectedly activates an immune response shows how this mechanism can also be used to get rid of tumour cells. This research was done in collaboration with University Hospital Basel, Switzerland, published in July 2013 in Nature Immunology.

The immune system combats microbes using several strategies, of which early activation of defence is one of the most important. The mechanisms used by the immune system to counterattack microbes often rely on the immediate recognition of microbes, or of cells that have been affected by the infection of microbes.

The team at SIgN led by Prof Gennaro De Libero has identified a novel mechanism of how the immune system readily detects invading microbes and effectively initiates early immune responses, by activating a special class of cells called gamma delta lymphocytes. Gamma delta lymphocytes were discovered more than 30 years ago and had been identified as cells that are capable of early protection as they play a decisive role in the first line of immune defence. However, many studies into discovering the mechanisms of how these cells are activated when microbes attack have been unfruitful.

The team's discovery of a protein called Butyrophilin 3A1 shows how it binds to microbial antigens and hence activates human gamma delta cells. These cells are then able to coordinate an immune response to clear the infection caused by invading microbes.

This protein has also been found to bind antigens that are produced in large amounts in tumour cells, which then activates gamma delta cells against these tumour cells. The discovery of this mechanism thus represents a novel target that will help to eradicate tumours and combat infections.

Prof De Libero said, "The identification of the molecular mechanisms of how human gamma delta cells get activated opens doors to novel opportunities for immunotherapy of infections and tumours."

Prof Philippe Kourilsky, Chairman of SIgN said, "This study is a breakthrough in immunology and also an excellent example of basic science as an important premise to medicine."

Prof Laurent Renia, Acting Executive Director of SIgN said, "We are delighted that this excellent science has paved the way for many others in immunology and other fields. I believe that these findings present great promise in developing new treatments for cancer therapy and infectious diseases."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protecting the Body from Itself
Scientists advance understanding of autoimmunity with discovery of link between major immune cell types.
Friday, September 26, 2014
Understanding and Improving the Body's Fight Against Pathogens
A*STAR scientists find new targets for modulating antibody response.
Tuesday, September 02, 2014
New Possibilities for Leukaemia Therapy with a Novel Mode of Cancer Cell Recognition
A new class of lipids in human leukaemia cells trigger an immune response to kill the cells.
Thursday, June 26, 2014
A*STAR, NUS and NUH Join Forces to Understand Immune Erosion in Elderly
The collaboration with Sanofi Pasteur aims to study the loss of immunity and consequent reduced responsiveness to vaccination in elderly.
Friday, February 14, 2014
Scientists Find a Promising Way To Boost The Body’s Immune Surveillance Via p53
Researchers at A*STAR have discovered a new mechanism involving p53, the famous tumour suppressor, to fight against aggressive cancers.
Thursday, September 26, 2013
New Strategy to Disarm the Dengue Virus Brings New Hope for a Universal Dengue Vaccine
A new strategy that cripples the ability of the dengue virus to escape the host immune system has been discovered by A*STAR’s Singapore Immunology Network (SIgN).
Wednesday, August 14, 2013
Breakthroughs in Chikungunya Research Spell New Hope for Better Treatment and Protection
A*STAR's SIgN have made great strides in the battle against the infectious disease.
Monday, September 24, 2012
Scientific News
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!