Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cancer Vaccine Begins Phase I Clinical Trials

Published: Wednesday, September 11, 2013
Last Updated: Wednesday, September 11, 2013
Bookmark and Share
Cross-disciplinary team brings novel therapeutic cancer vaccine to human clinical trials.

A cross-disciplinary team of scientists, engineers, and clinicians announced today that they have begun a Phase I clinical trial of an implantable vaccine to treat melanoma, the most lethal form of skin cancer.

The effort is the fruit of a new model of translational research being pursued at Harvard University that integrates the latest cancer research with bioinspired technology development. It was led by David J. Mooney, who is the Robert P. Pinkas Family Professor of Bioengineering at the Harvard School of Engineering and Applied Sciences (SEAS) and a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard, along with Glenn Dranoff, who is co-leader of Dana-Farber Cancer Institute’s Cancer Vaccine Center, a professor at Harvard Medical School, and an associate faculty member at the Wyss Institute.

Most therapeutic cancer vaccines available today require doctors to first remove the patient’s immune cells from the body, then reprogram them and reintroduce them back into the body. The new approach, which was first reported to eliminate tumors in mice in Science Translational Medicine in 2009, instead uses a small disk-like sponge about the size of a fingernail that is made from FDA-approved polymers. The sponge is implanted under the skin, and is designed to recruit and reprogram a patient’s own immune cells “on site,” instructing them to travel through the body, home in on cancer cells, then kill them.

The technology was initially designed to target cancerous melanoma in skin, but might have application to other cancers. In the preclinical study reported in Science Translational Medicine, 50 percent of mice treated with two doses of the vaccine—mice that would have otherwise died from melanoma within about 25 days—showed complete tumor regression.

“Our vaccine was made possible by combining a wide range of biomedical expertise that thrives in Boston and Cambridge,” said Mooney, who specializes in the design of biomaterials for tissue engineering and drug delivery. “It reflects the bioinspired engineering savvy and technology development focus of engineers and scientists at the Wyss Institute and Harvard SEAS, as well as the immunological and clinical expertise of the researchers and clinicians at Dana-Farber and Harvard Medical School.”

“This is expected to be the first of many new innovative therapies made possible by the Wyss Institute’s collaborative model of translational research that will enter human clinical trials,” said Wyss Founding Director Don Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and a Professor of Bioengineering at Harvard SEAS. “It validates our approach, which strives to move technologies into the clinical space much faster than would be possible in a traditional academic environment. It’s enormously gratifying to see one of our first technologies take this giant leap forward.”

The Wyss Institute comprises a consortium of researchers, engineers, clinicians, and staff with industrial and business development experience from Harvard University and nine other collaborating institutions in Greater Boston.

“It is rare to get a new technology tested in the laboratory and moved into human clinical trials so quickly,” said Dranoff, who also leads the Dana-Farber/Harvard Cancer Center Program in Cancer Immunology. “We’re beyond thrilled with the momentum, and excited about its potential.”

Recruitment of participants for the clinical trial began recently under the leadership of F. Stephen Hodi, Jr., Director of Dana-Farber’s Melanoma Center and Associate Professor of Medicine at Harvard Medical School. The goal of the Phase I study, which is expected to conclude in 2015, is to assess the safety of the vaccine in humans.

The cancer vaccine work has received support from the Wyss Institute, Dana-Farber, and the National Institutes of Health. In addition to Mooney, Dranoff, and Hodi, other collaborators include Edward Doherty and Omar Ali at the Wyss Institute; Jerry Ritz, Director of the Cell Processing Laboratory at Dana-Farber; Sara Russell and Charles Yoon, surgeons at Dana-Farber; and other clinical research team members based at Dana-Farber.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Giant Leap Against Diabetes
Ability to produce embryonic stem cells will allow researchers to push faster toward cure.
Friday, October 10, 2014
Airway Muscle-On-A-Chip Mimics Asthma
Tissue-level model of human airway musculature could pave way for patient-specific asthma treatments.
Wednesday, September 24, 2014
Viral Infections May Have Met Their Match
Researchers ID protein that sets off body's response to fight infection.
Friday, November 29, 2013
Scientific News
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Researchers Discover New Type of Mycovirus
Virus infects the fungus Aspergillus fumigatus, which can cause the human disease aspergillosis.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!