Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Begins Testing H7N9 Avian Influenza Vaccine Candidate

Published: Thursday, September 19, 2013
Last Updated: Thursday, September 19, 2013
Bookmark and Share
Researchers at nine sites nationwide have begun testing an investigational H7N9 avian influenza vaccine in humans.

The two concurrent Phase II clinical trials, sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, are designed to gather critical information about the safety of the candidate vaccine and the immune system responses it induces when administered at different dosages and with or without adjuvants, substances designed to boost the body’s immune response to vaccination.

Human cases of H7N9 influenza first emerged in China in February 2013, with the majority of reported infections occurring in the spring. As of Aug. 12, 135 confirmed human cases, including 44 deaths, have been reported by the World Health Organization. Most of these cases involved people who came into contact with infected poultry. Although no H7N9 influenza cases have been reported outside of China and the virus has not demonstrated sustained person-to-person transmission, there is concern that it could mutate to pose a much greater public health threat.

“H7N9 avian influenza virus — like all novel influenza virus strains to which people have not been exposed — has the potential to cause widespread sickness and mortality,” said NIAID Director Anthony S. Fauci, M.D. “We are now testing a vaccine candidate with and without adjuvant in an effort to prepare for and, hopefully, protect against this possibility.”

The two clinical trials, which will enroll healthy adults ages 19 to 64, will evaluate an investigational H7N9 vaccine developed by Sanofi Pasteur. The candidate vaccine was made from inactivated H7N9 virus isolated in Shanghai, China in 2013. Adjuvants are being tested with the investigational vaccine because previous vaccine research involving other H7 influenza viruses has suggested that two doses of vaccine without adjuvant may not produce an immune response adequate to provide effective protection. In pandemic situations, adjuvants also can be used as part of a dose-sparing strategy, which would allow production of more doses of vaccine from the available supply of the viral antigen, thereby allowing a greater number of people to be vaccinated more quickly.

The first clinical trial, led by Mark J. Mulligan, M.D., of Emory University in Atlanta, will enroll as many as 700 study participants who will be randomly assigned to one of seven groups (up to 100 participants in each group). Each group will receive two equivalent dosages (3.75 micrograms [mcg], 7.5 mcg, 15 mcg or 45 mcg) of the candidate vaccine, approximately 21 days apart. Five of the groups will receive the vaccinations along with MF59 adjuvant, developed by Novartis Vaccines and Diagnostics.

Of these five groups, three will receive adjuvant with both vaccinations; one group of participants will receive adjuvant only with the first vaccination; and another group of participants will receive adjuvant only with the second vaccination. Two groups of participants will not receive adjuvant. The MF59 adjuvant that is being tested is also contained in the Fluad seasonal influenza vaccine currently licensed in Europe and Canada for use in people age 65 years or older.

The second trial, led by Lisa A. Jackson, M.D., M.P.H., of Group Health Research Institute in Seattle, will enroll as many as 1,000 participants. Each participant will be randomly assigned to one of 10 groups (up to 100 participants per group) and will receive two equivalent doses (same dosages as the other trial) of the investigational H7N9 vaccine given 21 days apart.

Seven of these groups will receive the vaccinations either with or without AS03 adjuvant, developed by GlaxoSmithKline Biologics. Two groups will receive their first vaccination with AS03 or MF59 adjuvant and then receive the alternate adjuvant at time of second vaccination. One group will receive the MF59 adjuvant at both vaccinations. The AS03 adjuvant that is being tested was used in a 2009 H1N1 influenza vaccine, Pandemrix, used in several European countries during the 2009-2010 H1N1 influenza pandemic.

In both studies, which are expected to conclude in December 2014, a panel of independent experts will closely monitor safety data at regular intervals throughout the trial.

The vaccine studies are being conducted at the eight NIAID-funded Vaccine and Treatment Evaluation Units: Baylor College of Medicine, Houston; Children’s Hospital Medical Center, Cincinnati; Emory University, Atlanta; Group Health Cooperative, Seattle; Saint Louis University, St. Louis; University of Iowa, Iowa City; University of Maryland School of Medicine, Baltimore; and Vanderbilt University, Nashville. The University of Texas Medical Branch at Galveston will conduct the trial as a subcontractor to Baylor College of Medicine.

Further information about both clinical trials can be found below using the identifiers: NCT01938742 and NCT01942265.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Wednesday, November 23, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Ebola-Affected Countries Receive NIH Support
The National Institutes of Health has established a new program to further research capacity to study Ebola and other epidemics.
Thursday, October 27, 2016
Skin Patch to Treat Peanut Allergy
NIH-funded study suggests peanut protein patch is a safe and convenient method of treatment.
Thursday, October 27, 2016
Sustained SIV Remission Achieved in Monkeys
Experimental treatment boosts monkey immune system to force SIV into sustained remission.
Wednesday, October 26, 2016
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
Thursday, October 20, 2016
DNA Vaccines Protect Monkeys Against Zika Virus
Two experimental Zika virus DNA vaccines developed by NIH scientists protected monkeys against Zika infection.
Wednesday, October 05, 2016
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Saturday, October 01, 2016
Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Oral Immunotherapy Is Safe, Effective Treatment for Peanut-Allergic Preschoolers
Study demonstrates the potential of peanut OIT to suppress allergic immune responses to peanut.
Friday, August 12, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Zika Vaccine Candidates Show Promise
Two experimental vaccines have shown promise against a major viral strain responsible for the Brazilian Zika outbreak.
Friday, July 29, 2016
Targeting Autoimmunity
Researchers have developed a strategy to treat a rare autoimmune disease which could lead to treatments of other autoimmune diseases.
Wednesday, July 27, 2016
NIH Investment Into HIV Research Expands
Funding has been awarded to six research teams to lead collaborative investigations worldwide toward an HIV cure.
Thursday, July 14, 2016
Scientific News
New Regulator of Immune Reaction Discovered
Calcium signal in cell nucleus regulates not only many brain functions but also defence reactions of the immune system.
First Steps to Neutralising Zika
Researchers have discovered a highly potent antibody that neutralises Zika infection at a cellular level.
Cell’s ‘Built-In Circuit’ Help Prevent Tumour Growth
Researchers have created cells with a 'built-in genetic circuit' that inhibits tumour growth.
Factors Behind Suppression of Stem Cell Mobilization Revealed
The findings could lead to improvements in transplantation therapy.
Common Virus Helps Fight Liver Cancer
Reovirus, a cause of childhood colds, stimulates the immune system to kill cancerous cells.
Antibody Protects Mice from Zika Infection
Researchers develop human-derived antibody protected pregnant mice and their developing fetuses from Zika infection.
Human Astrovirus Structure Could Lead to Therapies, Vaccines
Study shows where neutralizing antibody binds to human astrovirus, a leading cause of viral diarrhoea in children, elderly, and the immune-compromised.
T Cell Channel Could Be Targeted to Treat Cancers
Researcher identify ion-channel found within T cells that could be targeted to reduce development of neck and head cancers.
Targeting Pancreatic Cancer
Cutting-edge technology exploits cancer cells’ vulnerabilities to develop new treatments.
A Genome-wide View of Human DNA Viruses
In this study, Duplex sequencing was used to accurately analyse the genome-wide rate of spontaneous mutation of human adenovirus C5 (HAdv5).
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!