Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Clues to Autoimmune Conditions are Revealed by Genomic Analysis of a Skin Disease

Published: Monday, September 30, 2013
Last Updated: Monday, September 30, 2013
Bookmark and Share
UB researchers’ findings about Pemphigus vulgaris reveal a novel protective mechanism in at-risk individuals who remain healthy.

Researchers studying a rare, blistering skin condition have made a novel discovery:  they have identified a protective mechanism among genetically susceptible individuals who nevertheless remain healthy. The research is providing new clues to why some individuals who carry genetic risk factors for developing autoimmune diseases, do not go on to develop them.

The paper was published in late August in Genes and Immunity, a Nature Publishing Group journal, by researchers at the University at Buffalo’s ’s Clinical and Translational Research Center. The study of the skin condition Pemphigus vulgaris (PV), is the first genome-wide transcriptional analysis of the disease, which allows for a comprehensive survey of disease-related genes.

“Our findings introduce a potentially paradigm-shifting concept of how autoimmunity in general might be kept at bay in genetically susceptible individuals,” explains Animesh A. Sinha, MD, PhD, Rita M. and Ralph T. Behling Professor and Chair of Dermatology in the UB School of Medicine and Biomedical Sciences and lead author on the paper.

PV is an autoimmune skin disorder that results in the often painful blistering of the skin and mucous membranes. Generally treated with corticosteroids and other immunosuppressive agents, the condition is life-threatening if untreated.

According to Sinha, PV is an excellent model for the study of organ-specific human autoimmune disease.

The research, which was initiated at Weill Medical College of Cornell University/New York Hospital and completed at UB, involved the microarray screening of more than 54,000 genes in the blood of 13 patients with active PV, 8 patients in remission and 10 healthy controls. A subset of controls expressed proteins  in their blood previously identified by Sinha to be PV risk factors, but they exhibited no autoimmune symptoms.

Sinha described the goals of the study. “We wanted to establish genetic signatures relevant to the disease in order to define new molecular markers for diagnosis and prognosis, highlight biological pathways involved in the development of the disease, discover novel targets for therapy and try to pinpoint disease susceptibility genes,” he explains.

“It turns out that healthy individuals with a genetic risk factor for developing PV but who are symptom-free, have down-regulated expression of a set of genes in their blood that we found is up-regulated in patients with PV,” he explains.

“This suggests a ‘protection signature’ in healthy individuals carrying these genetic risk elements,” he says.

“We believe that this is the first time that such a protection signature has been identified for any autoimmune condition,” says Sinha. “Eventually, we might be able to leverage information contained within this ‘natural response’ of the immune system against autoimmunity in order to develop entirely new strategies to block disease.

“With this knowledge, it may be possible to identify genes and immune pathways that can be manipulated in patients and at-risk individuals to prevent, or even reverse, the development of autoimmunity,” he concludes.

The research also may make possible the development of more individually-tailored treatments in an era of personalized medicine, he adds.

Co-authors with Sinha are Rama Dey-Rao,PhD, post-doctoral associate and Kristina Seiffert-Sinha, MD, research assistant professor, both of the UB Department of Dermatology.

The research was funded by the Colleck Research Fund, UB’s Behling Dermatology Fund and UB.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Hybrid Vehicle That Delivers DNA
University at Buffalo researchers are developing new technology to improve DNA vaccines. The new transport system for DNA vaccines could help treat HIV, malaria, HPV and other major illnesses.
Thursday, November 27, 2014
Scientific News
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
Fighting Cancer with Borrowed Immunity
A new step in cancer immunotherapy: researchers from the Netherlands Cancer Institute and University of Oslo/Oslo University Hospital show that even if one's own immune cells cannot recognize and fight their tumors, someone else's immune cells might.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
"Sunscreen" Gene May Guard Against Melanoma
USC-led study reveals that melanoma patients with deficient or mutant copies of the gene are less protected from harmful ultraviolet rays.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!