Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cell-Detection System Promising for Medical Research, Diagnostics

Published: Thursday, October 03, 2013
Last Updated: Thursday, October 03, 2013
Bookmark and Share
Researchers are developing a system that uses tiny magnetic beads to quickly detect rare types of cancer cells circulating in a patient's blood.

While other researchers have used magnetic beads for similar applications, the new “high-throughput" system has the ability to quickly process and analyze large volumes of blood or other fluids, said Cagri Savran (pronounced Chary Savran), an associate professor of mechanical engineering at Purdue University.

He is working with oncologists at the Indiana University School of Medicine to further develop the technology, which recently was highlighted in the journal Lab on a Chip.

The approach combines two techniques: immunomagnetic separation and microfluidics. In immunomagnetic separation, magnetic beads about a micron in diameter are "functionalized," or coated with antibodies that recognize and attach to antigens on the surface of target cells.

The researchers functionalized the beads to recognize breast cancer and lung cancer cells in laboratory cultures.

"We were able to detect cancer cells with up to a 90 percent yield," said Savran, working with Purdue postdoctoral fellow Chun-Li Chang and medical researchers Shadia Jalal and Daniela E. Matei from the IU School of Medicine's Department of Medicine. "We expect this system to be useful in a wide variety of settings, including detection of rare cells for clinical applications."

Previous systems using immunomagnetic separation to isolate cells required that the cells then be transferred to another system to be identified, counted and studied.

"What's new here is that we've built a system that can perform all of these steps on one chip," said Savran, also an associate professor of biomedical engineering. "It both separates cells and also places them on a chip surface so you can count them and study them with a microscope."

Another innovation is the fast processing, he said. Other "microfluidic" chips are unable to quickly process large volumes of fluid because they rely on extremely narrow channels, which restrict fluid flow.

"The circulating cancer cells are difficult to detect because very few of them are contained in blood," Savran said. "That means you have to use as many magnetic beads as practically possible to quickly screen and process a relatively large sample, or you won't find these cells."

The new design passes the fluid through a chamber that allows for faster flow; a standard 7.5-milliliter fluid sample can run through the system in a matter of minutes.

The Purdue portion of the research is based at the Birck Nanotechnology Center in Purdue's Discovery Park.

The beads are directed by a magnetic field to a silicon mesh containing holes 8 microns in diameter. Because the target cells are so sparse, many of the beads fail to attract any and pass through the silicon mesh. The beads that have attached to cells are too large to pass through the holes in the mesh.

If needed, the cells can quickly be flushed from the system for further analysis simply by turning off the magnetic field.

"Not only can the cells be readily retrieved for further usage, the chip can be re-used for subsequent experiments," Savran said.

The technology also could be used to cull other types of cells.

"This is not only for cancer applications," he said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bird Flu Expert Working on Vaccine that Protects Against Multiple Strains
As the bird flu outbreak in China worsens, a Purdue University expert is working on vaccines that offer broader protection against multiple strains of the virus.
Friday, May 10, 2013
Discovery Points to New Approach to Fight Dengue Virus
Researchers have discovered that rising temperature induces key changes in the dengue virus when it enters its human host, suggests new approach for designing vaccines against the aggressive mosquito-borne pathogen.
Monday, April 15, 2013
Research Reveals how Antibodies Neutralize Mosquito-Borne Virus
Researchers have learned the precise structure of the mosquito-transmitted chikungunya virus pathogen while it is bound to antibodies, showing how the infection is likely neutralized.
Wednesday, April 03, 2013
Researcher Taking Shot at Flu Vaccine That's More Effective, Easier to Make
In the midst of an unusually deadly flu season and armed with a vaccine that only offers partial protection, researcher is working on a flu vaccine that overcomes the need to predict which strains will hit each year.
Monday, February 11, 2013
Purdue Research Park-based Life Sciences Firm Receives $300,000 NIH Grant
A life sciences company whose technology could help researchers develop drug candidates to battle cancer, diabetes, and immune system and neurological disorders has received a $300,000 grant.
Friday, November 16, 2012
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Anti-Inflammatory Drugs Could Strengthen Airway Immunity
Mold toxins can weaken the airways' clearing mechanisms and immunity, but PKC inhibitors showed promise as a treatment.
Antibodies Paving the Way to HIV Vaccine
Researchers uncover factors responsible for the formation of broadly neutralizing HIV antibodies in humans.
Vaccine Against Common Cold Achievable
Researchers suggest that a vaccine against rhinoviruses is possible using variant virus vaccines.
Treating Sepsis with Marine Mitochondria
Mitochondrial alternative oxidase from a marine animal combats bacterial sepsis.
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Culex Mosquitoes Do Not Transmit Zika
A study of the Culex species mosquito appears to show that the species does not transmit Zika virus.
Molecular Switch Aids Immune Therapy
Researchers identify strategy to maximise effectiveness of immune therapy through molecular switch controlling immune suppression.
Bacteria Use Ranking Strategy to Fight Off Viruses
Researchers have explained why microbes store virus confrontation information sequentially, with most recent attacks first.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!