Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Identify Way to Increase Gene Therapy Success

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Scientists have found a way to keep the immune system from neutralizing a therapeutic virus before it can deliver its genetic payload.

In a study published recently in Molecular Therapy, researchers found that giving subjects a treatment to temporarily rid the body of antibodies provides the virus safe passage to targeted cells, allowing it to release a corrective or replacement gene to treat disease.

Gene therapy is among the most promising treatment options for such genetic disorders as muscular dystrophy, congenital blindness and hemophilia. Scientists also are investigating gene therapy as a cure for some cancers, neurodegenerative diseases, viral infections and other acquired illnesses. To get the therapeutic gene into cells, researchers have turned to viruses, which deliver their genetic material into cells as part of their normal replication process. Time and time again, these efforts have been thwarted by the body’s own immune system, which attacks the viral vector. The therapeutic genes aren’t delivered and disease rages on.

Now, a team led by Louis G. Chicoine, MD, Louise Rodino-Klapac, PhD, and Jerry R. Mendell, MD, principal investigators in the Center for Gene Therapy at Nationwide Children’s, has shown for the first time that using a process called plasmapheresis just before delivering a virus-packed gene therapy protects the virus long enough for it to enter the cell and deliver the gene.

Plasmapheresis, widely used to treat patients with autoimmune disorders, removes blood from the body, separates the plasma and cells, filters out antibodies, and returns the blood to the patient. The antibody loss is temporary; the body begins producing new antibodies within a few hours of the procedure.

In a study of a gene therapy designed to treat Duchenne muscular dystrophy (DMD), Drs. Chicoine and Rodino-Klapac used plasmapheresis in a large animal model, then injected a virus packed with a micro-dystrophin gene. When they examined the levels of micro-dystrophin gene expression in the animals, they found a 500 percent percent increase over gene expression in animals that did not receive plasmapheresis. Dr. Mendell, director of the Center for Gene Therapy, helped conceive of this treatment for DMD patients based on experience with autoimmune diseases such as myasthenia gravis and inflammatory nerve diseases.

“Right now, gene therapy seems to work best in patients who have no antibodies for the virus being used to deliver the gene,” Dr. Mendell says. “That limits the number of patients who can benefit from gene therapy.”

Using plasmapheresis would increase the potential for gene therapy, Dr. Chicoine adds, by eliminating one obstacle of immune reaction.

“As gene therapy becomes more prevalent, patients may need to receive more than one treatment,” Dr. Rodino-Klapac says. “The problem is that when they get the first treatment, their body will develop antibodies to the virus used to deliver the gene. Using plasmapheresis on someone who previously received gene therapy could allow them to be treated again.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Immune System 'On Switch' Breakthrough Could Lead to Targeted Drugs
A crucial 'on switch' that boosts the body's defenses against infections has been successfully identified in new scientific research.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!