Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Scientists Develop Candidate Vaccine Against Respiratory Syncytial Virus

Published: Friday, November 01, 2013
Last Updated: Friday, November 01, 2013
Bookmark and Share
Structure-based design may be key to successful vaccine for common childhood illness.

An experimental vaccine to protect against respiratory syncytial virus (RSV) elicited high levels of RSV-specific antibodies when tested in animals, according to a report in the journal Science.

Early-stage human clinical trials of the candidate vaccine are planned. Scientists from the Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, built on their previous findings about the structure of a critical viral protein to design the vaccine. The team was led by Peter D. Kwong, Ph.D., and Barney S. Graham, M.D., Ph.D.

The respiratory syncytial virus (RSV) is responsible for a common childhood illness. There is no vaccine available to prevent RSV infection.

In the United States, RSV infection is the most common cause of bronchiolitis (inflammation of small airways in the lungs) and pneumonia in children less than one year old and the most common cause for hospitalization in children under five.

Worldwide, it is estimated that RSV is responsible for nearly 7 percent of deaths in babies aged 1 month to 1 year; only malaria kills more children in this age group. Others at risk for severe disease following RSV infection include adults over age 65 and those with compromised immune systems.

"Many common diseases of childhood are now vaccine-preventable, but a vaccine against RSV infection has eluded us for decades," said NIAID Director Anthony S. Fauci, M.D. "This work marks a major step forward. Not only does the experimental vaccine developed by our scientists elicit strong RSV-neutralizing activity in animals, but, more broadly, this technique of using structural information to inform vaccine design is being applied to other viral diseases, including HIV/AIDS."

Earlier this year, the VRC team obtained atomic-level details (http://www.niaid.nih.gov/news/newsreleases/2013/Pages/RSV.aspx) of an RSV protein - called the fusion (F) glycoprotein - bound to a broadly neutralizing human RSV antibody. The protein-antibody complex gave scientists their first look at the F glycoprotein as it appears before it fuses with a human cell.

In this pre-fusion shape, F glycoprotein contains a region vulnerable to attack by broadly neutralizing antibodies (antibodies able to block infection from the common strains of RSV).

Once RSV fuses with a cell, this vulnerable area, named antigenic site zero by the researchers, is no longer present on the rearranged F protein. In natural RSV infection, the immune system produces antibodies against both the pre-fusion and post-fusion forms of F glycoprotein.

But the antibodies to antigenic site zero, which is only present on the pre-fusion form, have much stronger neutralizing activity. Therefore, a vaccine against RSV would have greater chance of success by eliciting antibodies directed at F glycoprotein in its pre-fusion configuration.

In their current publication, Drs. Kwong and Graham describe how they used this structural information to design and engineer F glycoprotein variants that retained antigenic site zero even when no antibody was bound to it.

The goal was to create stable variants that could serve as the foundation for a vaccine capable of eliciting a potent antibody response. The researchers designed more than 100 variants; of these, three were shown by X-ray crystallography to retain the desired structure. The engineered variants were then used as vaccines in a series of experiments in mice and rhesus macaques.

In mice and macaques, the researchers found that the more stable the protein, the higher the levels of neutralizing antibodies elicited by vaccination. The levels of antibody made in response to one of the engineered F glycoproteins were more than 10 times higher than those produced following vaccination with post-fusion F glycoprotein and well above levels needed to protect against RSV infection.

"Here is a case in which information gained from structural biology has provided the insight needed to solve an immunological puzzle and apply the findings to address a real-world public health problem," said Dr. Graham.

He and the VRC scientists are continuing to refine the engineered F glycoproteins and hope to launch early-stage human clinical trials of a candidate RSV vaccine as soon as clinical grade material can be manufactured, a process that takes about 18 to 24 months.

"Previously, structure-based vaccine design held promise at a conceptual level," said Dr. Kwong. "This advance delivers on that promise and sets the stage for similar applications of structure-guided design to effective vaccines against other pathogens."

Dr. Fauci added, "This latest advance underscores the advantages of the VRC's organizational design, where experts in RSV virology, vaccinology and clinical studies, such as Dr. Graham, are in daily contact with Dr. Kwong and others who are experts in structural biology. Such close collaboration across disciplines allows for rapid testing of new approaches to a given problem."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
In Uveitis, Bacteria in Gut May Instruct Immune Cells to Attack the Eye
NIH scientists propose novel mechanism to explain autoimmune uveitis.
Wednesday, August 19, 2015
Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Starting Antiretroviral Treatment Early Improves Outcomes for HIV-infected Individuals
NIH-funded trial results likely will impact global treatment guidelines.
Thursday, May 28, 2015
For Most Children with HIV and Low Immune Cell Count, Cells Rebound After Treatment
NIH-funded study finds T-cell level returns to normal with time.
Saturday, March 28, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Autoimmune Disease Super-Regulators Uncovered
Scientists discovered key genetic switches, called super-enhancers, involved in regulating the human immune system.
Tuesday, March 17, 2015
NIH Announces $41.5 Million in Funding for the Human Placenta Project
Better understanding of the placenta promises to improve the health of mothers and children.
Tuesday, March 03, 2015
NIH-funded Scientists Create Potential Long-acting HIV Therapeutic
New molecule also might prevent HIV infection.
Tuesday, February 24, 2015
Link Between Powerful Gene Regulatory Elements and Autoimmune Diseases Revealed
Findings point to potential drug targets.
Thursday, February 19, 2015
NIH-Sponsored HIV Vaccine Trial Launches In South Africa
Early-stage trial aims to build on RV144 results.
Thursday, February 19, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Candidate H7N9 Avian Flu Vaccine Works Better With Adjuvant
Results of large NIH-sponsored trial demonstrate improved vaccine response when an adjuvant was used.
Wednesday, October 08, 2014
NIH Awards Seven New Vaccine Adjuvant Discovery Contracts
Total funding for these contracts reach approximately $70 million over five years.
Tuesday, October 07, 2014
Scientific News
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
Flesh-Eating Bacteria Work Together
Scientists recently discovered different strains of deadly flesh-eating bacteria working together to spread infection and they now have a better understanding of the role of the toxins they produce. The discovery could change how the illness and other diseases are treated.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!