Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Key HIV Protein Structure Revealed

Published: Tuesday, November 26, 2013
Last Updated: Tuesday, November 26, 2013
Bookmark and Share
Researchers have developed a more detailed picture of the protein largely responsible for enabling HIV to enter human immune cells and cause infection.

HIV, the virus that causes AIDS, infects more than 34 million people worldwide. Once in the body, HIV attacks and destroys immune cells. Current treatment with antiretroviral therapy helps to prevent the virus from multiplying, thus protecting the immune system.

Despite recent advances in treatment, scientists haven’t yet designed a vaccine that protects people from HIV. One challenge is that a viral surface protein known as Env can mutate rapidly. Resulting changes to the protein’s surface enable it to evade the immune system. An in-depth understanding of the structure of Env is critical to determine how the virus gains entry into cells. Env is also a major target for potential HIV vaccines.

Env extends from the surface of the HIV virus particle. The spike-shaped protein is “trimeric”—with 3 identical molecules, each with a cap-like region called glycoprotein 120 (gp120) and a stem called glycoprotein 41 (gp41) that anchors the structure in the viral membrane. Only the functional portions of Env remain constant, but these are generally hidden from the immune system by the molecule’s structure.

X-ray analyses and low-resolution electron microscopy have revealed the overall architecture and some critical features of Env. But higher resolution imaging of the overall protein structure has been elusive because of its complex, delicate structure. To gain a clearer image, a team of scientists at the Scripps Research Institute and Weill Cornell Medical College engineered a more sturdy form of the protein. Their work was supported in part by NIH’s National Institute of Allergy and Infectious Diseases (NIAID), National Institute of General Medical Sciences (NIGMS), and National Cancer Institute (NCI). The results were published in 2 papers online on October 31, 2013, in Science.

Using cryo-electron microscopy and X-ray crystallography, the researchers determined the detailed structure of Env. The team revealed the spatial arrangement of the Env components and their assembly. They determined the gp120 and gp41 subunit relationships as well as the interaction with neutralizing antibodies, which can block many strains of HIV from infecting human cells.

“Most of the prior structural studies of this envelope complex focused on individual subunits, but the structure of the intact trimeric complex was required to fully define the sites of vulnerability that could be targeted, for example with a vaccine,” says Scripps researcher Dr. Ian A. Wilson, a senior author of the papers.

“Now we all need to harness this new knowledge to design and test next-generation trimers and see if we can induce the broadly active neutralizing antibodies that an effective vaccine is going to need,” adds Weill Cornell scientist Dr. John P. Moore, another senior author.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Oxygen Can Impair Cancer Immunotherapy
Researchers have identified a mechanism within the lungs where anticancer immune resposnse is inhibited.
Friday, August 26, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Oral Immunotherapy Is Safe, Effective Treatment for Peanut-Allergic Preschoolers
Study demonstrates the potential of peanut OIT to suppress allergic immune responses to peanut.
Friday, August 12, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Zika Vaccine Candidates Show Promise
Two experimental vaccines have shown promise against a major viral strain responsible for the Brazilian Zika outbreak.
Friday, July 29, 2016
Targeting Autoimmunity
Researchers have developed a strategy to treat a rare autoimmune disease which could lead to treatments of other autoimmune diseases.
Wednesday, July 27, 2016
NIH Investment Into HIV Research Expands
Funding has been awarded to six research teams to lead collaborative investigations worldwide toward an HIV cure.
Thursday, July 14, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Awards Grants to Explore Vaccine Adjuvants
NIH awards six grants to explore how combination adjuvants improve vaccines.
Wednesday, April 06, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Anti-Inflammatory Drugs Could Strengthen Airway Immunity
Mold toxins can weaken the airways' clearing mechanisms and immunity, but PKC inhibitors showed promise as a treatment.
Antibodies Paving the Way to HIV Vaccine
Researchers uncover factors responsible for the formation of broadly neutralizing HIV antibodies in humans.
Vaccine Against Common Cold Achievable
Researchers suggest that a vaccine against rhinoviruses is possible using variant virus vaccines.
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Treating Sepsis with Marine Mitochondria
Mitochondrial alternative oxidase from a marine animal combats bacterial sepsis.
Culex Mosquitoes Do Not Transmit Zika
A study of the Culex species mosquito appears to show that the species does not transmit Zika virus.
Bacteria Use Ranking Strategy to Fight Off Viruses
Researchers have explained why microbes store virus confrontation information sequentially, with most recent attacks first.
Molecular Switch Aids Immune Therapy
Researchers identify strategy to maximise effectiveness of immune therapy through molecular switch controlling immune suppression.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!