Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Key HIV Protein Structure Revealed

Published: Tuesday, November 26, 2013
Last Updated: Tuesday, November 26, 2013
Bookmark and Share
Researchers have developed a more detailed picture of the protein largely responsible for enabling HIV to enter human immune cells and cause infection.

HIV, the virus that causes AIDS, infects more than 34 million people worldwide. Once in the body, HIV attacks and destroys immune cells. Current treatment with antiretroviral therapy helps to prevent the virus from multiplying, thus protecting the immune system.

Despite recent advances in treatment, scientists haven’t yet designed a vaccine that protects people from HIV. One challenge is that a viral surface protein known as Env can mutate rapidly. Resulting changes to the protein’s surface enable it to evade the immune system. An in-depth understanding of the structure of Env is critical to determine how the virus gains entry into cells. Env is also a major target for potential HIV vaccines.

Env extends from the surface of the HIV virus particle. The spike-shaped protein is “trimeric”—with 3 identical molecules, each with a cap-like region called glycoprotein 120 (gp120) and a stem called glycoprotein 41 (gp41) that anchors the structure in the viral membrane. Only the functional portions of Env remain constant, but these are generally hidden from the immune system by the molecule’s structure.

X-ray analyses and low-resolution electron microscopy have revealed the overall architecture and some critical features of Env. But higher resolution imaging of the overall protein structure has been elusive because of its complex, delicate structure. To gain a clearer image, a team of scientists at the Scripps Research Institute and Weill Cornell Medical College engineered a more sturdy form of the protein. Their work was supported in part by NIH’s National Institute of Allergy and Infectious Diseases (NIAID), National Institute of General Medical Sciences (NIGMS), and National Cancer Institute (NCI). The results were published in 2 papers online on October 31, 2013, in Science.

Using cryo-electron microscopy and X-ray crystallography, the researchers determined the detailed structure of Env. The team revealed the spatial arrangement of the Env components and their assembly. They determined the gp120 and gp41 subunit relationships as well as the interaction with neutralizing antibodies, which can block many strains of HIV from infecting human cells.

“Most of the prior structural studies of this envelope complex focused on individual subunits, but the structure of the intact trimeric complex was required to fully define the sites of vulnerability that could be targeted, for example with a vaccine,” says Scripps researcher Dr. Ian A. Wilson, a senior author of the papers.

“Now we all need to harness this new knowledge to design and test next-generation trimers and see if we can induce the broadly active neutralizing antibodies that an effective vaccine is going to need,” adds Weill Cornell scientist Dr. John P. Moore, another senior author.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

In Uveitis, Bacteria in Gut May Instruct Immune Cells to Attack the Eye
NIH scientists propose novel mechanism to explain autoimmune uveitis.
Wednesday, August 19, 2015
Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Starting Antiretroviral Treatment Early Improves Outcomes for HIV-infected Individuals
NIH-funded trial results likely will impact global treatment guidelines.
Thursday, May 28, 2015
For Most Children with HIV and Low Immune Cell Count, Cells Rebound After Treatment
NIH-funded study finds T-cell level returns to normal with time.
Saturday, March 28, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Autoimmune Disease Super-Regulators Uncovered
Scientists discovered key genetic switches, called super-enhancers, involved in regulating the human immune system.
Tuesday, March 17, 2015
NIH Announces $41.5 Million in Funding for the Human Placenta Project
Better understanding of the placenta promises to improve the health of mothers and children.
Tuesday, March 03, 2015
NIH-funded Scientists Create Potential Long-acting HIV Therapeutic
New molecule also might prevent HIV infection.
Tuesday, February 24, 2015
Link Between Powerful Gene Regulatory Elements and Autoimmune Diseases Revealed
Findings point to potential drug targets.
Thursday, February 19, 2015
NIH-Sponsored HIV Vaccine Trial Launches In South Africa
Early-stage trial aims to build on RV144 results.
Thursday, February 19, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Candidate H7N9 Avian Flu Vaccine Works Better With Adjuvant
Results of large NIH-sponsored trial demonstrate improved vaccine response when an adjuvant was used.
Wednesday, October 08, 2014
NIH Awards Seven New Vaccine Adjuvant Discovery Contracts
Total funding for these contracts reach approximately $70 million over five years.
Tuesday, October 07, 2014
NIH to Admit Patient Exposed to Ebola Virus for Observation
Ebola patients can be safely cared for at any hospital that follows CDC's infection control recommendations.
Wednesday, October 01, 2014
Scientific News
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Detecting HIV Diagnostic Antibodies with DNA Nanomachines
New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV.
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Antibody Treatment Efficacious in Psoriasis
An experimental, biologic treatment, brodalumab, achieved 100 percent reduction in psoriasis symptoms in twice as many patients as a second, commonly used treatment, according to the results of a multicenter clinical trial led by Mount Sinai researchers.
Four Gut Bacteria Decrease Asthma Risk in Infants
New research by scientists at UBC and BC Children’s Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age.
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos