Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Immune Response Triggered by Honeybee Venom Supports Hypothesis on the Origin of Allergies

Published: Wednesday, November 27, 2013
Last Updated: Wednesday, November 27, 2013
Bookmark and Share
Allergy-like immune reactions could represent a mechanism of the body that protects it against toxins.

This surprising conclusion has been reached by scientists at Stanford University, USA, working on a research project co-financed by the Austrian Science Fund FWF. The recently published findings prove that honeybee venom triggers an immune response in mice associated with the formation of IgE antibodies, which are also typical for allergic responses. These IgEs then confer protection against higher amounts of the venom subsequently administered to the mice. Thus, for the first time, IgEs were observed as having a direct protective function against a venom - a finding that substantiates a controversial hypothesis on the emergence of allergies formulated in the 1990s.

Allergies are quite unnecessary: instead of fighting microbes that pose a threat to health, the immune system targets harmless pollens, hairs or dust particles. The question as to why the body puts up such a fight against harmless substances is one that preoccupies scientists all over the world. A study by an Erwin Schrödinger Fellow of the Austrian Science Fund FWF, which has been currently published in the journal Immunity, gives new impetus to a controversial hypothesis for the explanation of such allergic reactions.

Toxin Protects Against More Toxin
Dr. Philipp Starkl, who is using his fellowship to collaborate with Prof. Stephen J. Galli and his team at the Department of Pathology at Stanford University School of Medicine, summarises the results of the joint study as follows: "Mice, to whom we had previously administered small amounts of honeybee venom, subsequently displayed astonishing resistance to larger volumes of the toxin. As in the case with a vaccination, the body appeared to build a kind of immune protection against the bee venom." Interestingly, however, completely different responses in humans are also known - in some unfortunate people repeated contact with bee venom causes allergic reactions or even an anaphylactic shock. IgE-type antibodies are mainly responsible for this response.

Dr. Starkl and his colleagues investigated the question as to whether these antibodies are also involved in the reactions observed in mice. To establish this, honeybee venom was administered to three different mouse strains, in which the functioning of an immune reaction based on IgE was prevented in different ways. The results showed that, unlike the previously examined "normal" mice strains, these mice were unable to form any protection against honeybee venom. Therefore, IgEs seem to have a positive function in mice. This finding patently contradicts what was already known from humans, in who IgE antibodies are mainly seen as causing allergic reactions. It had been suspected that a positive function existed beyond this (for example in the immune response to parasites); however, it had not been possible to demonstrate it directly up to now.

Evolution Follows Function
The Stanford team though was not very surprised to discover this positive function of IgE. Dr. Starkl, who, together with his Belgian colleague Dr. Thomas Marichal, is co-first author of the current publication, explains: "In our view, the assumption that the function of IgE antibodies is limited to triggering allergic reactions always fell short of the mark. Otherwise, IgEs would surely have been eliminated in the course of evolution, a consideration that also underlies the so-called toxin hypothesis."

According to this hypothesis, the body can build protection against toxic substances using IgE antibodies and allergic reactions. Thus, IgEs would have fulfilled a very important role in human evolution - which only relinquished its significance with the development of increasingly protected lifestyles of humans. Furthermore, according to the hypothesis, allergic reactions are extreme or uncontrolled forms of the protection mechanism. The "underemployment" of this response in modern times could then actually contribute to its tendency to malfunction or overreact.

The toxin hypothesis, which was proposed by Margie Profet in 1991, has been hotly contested up to now - but never been refuted. The research carried out by the FWF Erwin Schrödinger Fellow now provides the first experimental finding that substantiates it - and demonstrates, once again, the importance of keeping an open mind in science.

The original publication can be accessed online.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$10M Grant Funds Infection-Focused Center
The new center will explore intracellular and intercellular processes by which salmonella bacteria, responsible for more than 100 million symptomatic infections annually, infect immune cells.
Wednesday, April 06, 2016
Glucose-Guzzling Immune Cells May Drive Coronary Artery Disease
Researchers at Stanford University have found excessive glucose uptake by inflammatory immune cells called macrophages, which reside in arterial plaques, may be behind coronary artery disease.
Wednesday, March 16, 2016
Mapping the Mechanical Properties of Living Cells
Researchers have developed a new way to use atomic force microscopy to rapidly measure the mechanical properties of cells at the nanometer scale, an advance that could pave the way for better understanding immune disorders and cancer.
Monday, December 21, 2015
Viral Infections Leave a Signature on the Immune System
A test that queries the body’s own cells can distinguish a viral infection from a bacterial infection and could help doctors know when to use antibiotics.
Thursday, December 17, 2015
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Friday, July 31, 2015
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
Thursday, July 30, 2015
Genetic Signature Enables Early, Accurate Sepsis Diagnosis
Systemic inflammation after injuries or surgery can dramatically alter the activity of thousands of genes, but a new study shows that changes in just 11 of them are enough to detect the presence or absence of accompanying infection.
Monday, May 18, 2015
Foreign Antibodies Mobilize Immune System to Fight Cancer
A mouse’s T cells can be primed to attack and eliminate a malignant tumor by injecting antibodies from another mouse with resistance to the tumor, as well as by activating certain signaling cells, a study has found.
Thursday, May 07, 2015
Stanford Research Leads to New Understanding of How Cells Grow and Shrink
Researchers use new techniques to document how cells can conceal growth and then suddenly swell up.
Saturday, May 17, 2014
DNA ‘Reverse’ Vaccine Reduces Levels of Immune Cells Believed Responsible For Type-1 Diabetes
A clinical trial of a vaccine has delivered initially promising results, suggesting that it may selectively counter the errant immune response that causes the diabetes.
Wednesday, July 03, 2013
Antibody Hinders Growth of Gleevec-Resistant Gastrointestinal Tumors in Lab Test
An antibody that binds to a molecule on the surface of a rare but deadly tumor of the gastrointestinal tract inhibits the growth of the cancer cells in mice.
Thursday, February 07, 2013
Lasker Award Goes to Biochemist James Spudich
Research helps to explain the molecular activity that enables heartbeats, makes muscles contract and powers immune cells.
Wednesday, September 12, 2012
Stanford Chemists Synthesize Compound that Flushes Out Latent HIV
A new collection of compounds, called "bryologs" - derived from a tiny marine organism - activate hidden reservoirs of the virus that currently make the disease nearly impossible to eradicate.
Monday, July 23, 2012
Stanford Scientist Omics Profile used to Discover, Track his Diabetes Onset
Researchers also spied on Dr Snyder's immune system and watched it battle viral infections.
Monday, March 19, 2012
Scientific News
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Developing a More Precise Seasonal Flu Vaccine
During the 2014-15 flu season, the poor match between the virus used to make the world’s vaccine stocks and the circulating seasonal virus yielded a vaccine that was less than 20 percent effective.
Fighting Cancer with Borrowed Immunity
A new step in cancer immunotherapy: researchers from the Netherlands Cancer Institute and University of Oslo/Oslo University Hospital show that even if one's own immune cells cannot recognize and fight their tumors, someone else's immune cells might.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Immune Cells Remember Their First Meal
Scientists at the University of Bristol have identified the trigger for immune cells' inflammatory response – a discovery that may pave the way for new treatments for many human diseases.
"Sunscreen" Gene May Guard Against Melanoma
USC-led study reveals that melanoma patients with deficient or mutant copies of the gene are less protected from harmful ultraviolet rays.
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Immune System Implicated in Gastroschisis
UCSF researchers show that the immune system is implicated in gastroschisis. The findings could lead to improved treatments for the belly birth defect.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!