Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Inovio Pharmaceutical's DNA Vaccine for the MERS Virus Induces Robust Immune Response

Published: Monday, December 02, 2013
Last Updated: Monday, December 02, 2013
Bookmark and Share
No vaccine exists for the MERS virus that has killed 42% of those infected.

Inovio Pharmaceuticals, Inc. announced that preclinical testing of a DNA synthetic vaccine for the virulent Middle East Respiratory Syndrome coronavirus (MERS) induced robust and durable immune responses, demonstrating the potential for a SynCon® DNA vaccine to prevent and treat this deadly virus.

Since 2012, when the virus was first identified, 153 cases from nine Middle Eastern countries have been reported and, alarmingly, 42% of these cases have been fatal. MERS is similar to the SARS virus which infected 8,000 people several years ago. MERS differs from SARS in that it appears to be less contagious, but MERS is almost five times as fatal as SARS, which killed 10% of those infected. There is no vaccine or effective treatment for MERS.

In this study, DNA vaccine constructs targeting multiple MERS antigens were generated using Inovio's SynCon® vaccine platform. These SynCon constructs were administered via Inovio's CELLECTRA® electroporation-based delivery technology. The vaccine constructs were observed to induce strong neutralizing antibodies and broad CD8+ T cells in mice. These findings are vital given the importance of neutralizing antibodies in preventing infection and the role T cells play in clearing infection by killing cells that harbor the virus.

Dr. J. Joseph Kim, Inovio's President and CEO, said, "Our SynCon® platform has again generated a synthetic vaccine candidate that shows promise for providing a treatment where there is none. With human data showing the powerful killing effect of T cells generated by our vaccine for HIV and our therapy for HPV-associated cervical dysplasia and various cancers, we look forward to providing Inovio's answer to MERS, a deadly infectious disease that has unknown pandemic potential. What's even more impressive about our candidate vaccine is that it is designed with the goal to universally protect against multiple strains of MERS, which has been shown to have diverse genetic variants. With appropriate external funding, this product could become an effective shield against this deadly virus."

To begin the study, a consensus MERS "spike" protein vaccine construct was created based on multiple strains of the MERS virus.  Inovio's MERS DNA vaccine was immunogenic in mice and seroconversion, or the development of detectable specific antibodies in the blood as a result of immunization, was observed in all animals. Furthermore, the antibodies generated by the vaccine in 100% of mice (20 of 20) were able to neutralize or completely block actual infection of MERS virus in the cells, demonstrating the protective potential of this vaccine. In contrast, none of the unvaccinated mice in the control group (10) generated neutralizing antibodies.

Researchers also observed that vaccination was highly T-cell immunogenic, generating robust and broad T cell responses as extensively analyzed by the standardized T cell ELISPOT assay. The vaccine produced robust CD8+ and CD4+ T cell responses against multiple epitopes of the MERS spike protein. This increased diversity and magnitude of cellular responses may be critical for effectively mitigating MERS infection.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Inovio Pharmaceuticals' Potent hTERT DNA Cancer Vaccine Shows Potential to Reduce Tumors and Prevent Tumor Recurrence
Mice and monkey study demonstrates robust and broad immune responses.
Thursday, July 25, 2013
Inovio Pharmaceuticals & U.S. Army Receive $3.5 Million Biodefense Grant
Inovio to advance painless device to simultaneously deliver multiple vaccines using electroporation technology.
Thursday, April 11, 2013
Scientific News
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
Flesh-Eating Bacteria Work Together
Scientists recently discovered different strains of deadly flesh-eating bacteria working together to spread infection and they now have a better understanding of the role of the toxins they produce. The discovery could change how the illness and other diseases are treated.
Utilizing Antibodies from Ebola Survivors
A collaborative team from The University of Texas Medical Branch at Galveston, Vanderbilt University, The Scripps Research Institute and Integral Molecular Inc. have learned that antibodies in the blood of people who have survived a strain of the Ebola virus can kill various types of Ebola.
Antibiotic Use in Early Life Disrupts Gut Microbiota
The use of antibiotics in early childhood interferes with normal development of the intestinal microbiota, shows research conducted at the University of Helsinki.
Easier Diagnosis for Fungal Infection of the Lungs
A new clinical imaging method developed in collaboration with a University of Exeter academic may enable doctors to tackle one of the main killers of patients with weakened immune systems sooner and more effectively.
Mitochondrial Troublemakers Unmasked in Lupus
Drivers of autoimmune disease inflammation discovered in the traps of pathogen-capturing white blood cells.
Important Regulator of Immune System Decoded
Plasma cells play a key role in our immune system. Now scientists at the Research Institute of Molecular Pathology (IMP) in Vienna, Austria, and at the Walter and Eliza Hall Institute (WEHI) in Melbourne, Australia, succeeded in characterizing a central regulator of plasma cell function.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!