Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Staphylococcus Aureus Bacteria Turns Immune System Against Itself

Published: Friday, December 13, 2013
Last Updated: Friday, December 13, 2013
Bookmark and Share
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, including the antibiotic-resistant strain MRSA.

University of Chicago scientists have recently discovered one of the keys to the immense success of S. aureus—the ability to hijack a primary human immune defense mechanism and use it to destroy white blood cells. The study was published Nov. 15 in Science.

“These bacteria have endowed themselves with weapons to not only anticipate every immune defense, but turn these immune defenses against the host as well,” said Olaf Schneewind, professor and chair of microbiology and senior author of the paper.

Neutrophils, a type of white blood cell that ensnares invaders in neutrophil extracellular traps (NETs), a web-like structure of DNA and proteins, is one of the first lines of defense in the human immune response. Captured bacteria are then destroyed by amoeba-like white blood cells known as macrophages. However, S. aureus infection sites are often marked by an absence of macrophages, indicating the bacteria somehow defend themselves against the immune system.

To reveal how these bacteria circumvent the human immune response, Schneewind and his team screened a series of S. aureus possessing mutations that shut down genes thought to play a role in infection. They looked to see how these mutated bacteria behaved in live tissue, and identified two strains that were unable to avoid macrophage attack. When these mutations—to the staphylococcal nuclease (nuc) and adenosine synthase A (adsA) genes respectively—were reversed, infection sites were free of macrophages again.

Looking for a mechanism of action, the researchers grew S. aureus in a laboratory dish alongside neutrophils and macrophages. The white blood cells were healthy in this environment and could clear bacteria. But the addition of a chemical to stimulate NET formation triggered macrophage death. Realizing that a toxic product was being generated by S. aureus in response to NETs, the team used high performance liquid chromatography and mass spectrometry techniques to isolate the molecule.

They discovered that S. aureus were converting NETs into 2’-deoxyadenosine (dAdo), a molecule that is toxic to macrophages. This effectively turned NETs into a weapon against the immune system.

“Sooner or later almost every human gets some form of S. aureus infection. Our work describes for the first time the mechanism that these bacteria use to exclude macrophages from infected sites,” Schneewind said. “Coupled with previously known mechanisms that suppress the adaptive immune response, the success of these organisms is almost guaranteed.”

S. aureus bacteria are found on the skin or in the respiratory tracts of colonized humans and commonly cause skin infections in the form of abscesses or boils. Normally not dangerous, severe issues arise when the bacteria enter the bloodstream, where they can cause diseases such as sepsis and meningitis. Antibiotic-resistant strains, such as methicillin-resistant S. aureus (MRSA), are difficult to treat and have plagued healthcare systems around the world.

Schneewind and his team hope to leverage their findings toward therapies against S. aureus infections. But both genes and the dAdo molecule are closely related to important human physiological mechanisms, and Schneewind believes targeting these in bacteria, without harming human function, could be difficult.

“In theory you could build inhibitors of these bacterial enzymes or remove them,” Schneewind said. “But these are untested waters and the pursuit of such a goal requires a lot more study.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.
Monday, November 09, 2015
Gut Bacteria that Protect Against Food Allergies Identified
Common gut bacteria prevent sensitization to allergens in a mouse model for peanut allergy, paving the way for probiotic therapies to treat food allergies.
Wednesday, August 27, 2014
Staphylococcus aureus Bacteria Turns Immune System Against Itself
Scientists use primary human immune defense mechanism to destroy white blood cells.
Thursday, December 05, 2013
Manipulating the Microbiome Could help Manage Weight
UChicago researchers team was able to unravel some of the mechanisms that regulate this weight gain.
Thursday, August 30, 2012
Scientific News
Improving Natural Killer Cancer Therapy
Vanderbilt University researchers discover transcription factor critical for NK cell expansion. Findings could lead to increased therapeutic efficacy.
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Gut Microbiomes Of Infants Have An Impact On Autoimmunity
Exposure to pathogens early in life is beneficial to the education and development of the human immune system.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Vaccinations Are More Effective When Administered In The Morning
Research from the University of Birmingham shows that influenza vaccinations have more protective responses when administered in the morning.
Secrets of a Deadly Virus Family Revealed
Scripps Research scientists uncover the glycoprotein structure of LCMV. The findings could guide development of treatments for Lassa fever.
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
Reduced Immune Response Causes Flu Deaths in Older Adults
Yale study suggests that immune response to flu causes death in older people, not the virus.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!