Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gut Microbes Affect MicroRNA Response to Bacterial Infection

Published: Wednesday, December 18, 2013
Last Updated: Wednesday, December 18, 2013
Bookmark and Share
When it comes to fighting off pathogens like Listeria, your best allies may be the billions of microorganisms that line your gut.

The study reveals that germ-free mice are more susceptible to infection with the foodborne pathogen Listeria monocytogenes than mice with conventional intestinal microbiota.

The authors were also able to show that expression of five intestinal microRNA (miRNA) molecules decreases in conventional mice upon Listeria infection while it did not in germ-free mice, indicating that the gut microbiota may determine, at least in part, how the mouse genome expression is reprogrammed in the gut and how the animal responds to an infection.

"We were surprised by the robustness of the intestinal miRNA signature in germ-free mice and conventional mice," says corresponding author Pascale Cossart of the Institut Pasteur in Paris, France. "Our results show that even very small variations in miRNA expression can have important outcomes," for the health of the animals, says Cossart.

In recent years, researchers have come to recognize that the gut microbiota is an indispensable partner in the development of an animal's immune response and in maintaining its internal stability, but few studies have addressed the impact the microbiota has on miRNA expression during bacterial infections. Cossart and her colleagues approached the matter using the system they know best: Listeria infection. L. monocytogenes is a frequent contaminant of raw milk products, and a highly publicized outbreak traced to Listeria-contaminated cantaloupe left 30 people dead in the fall of 2011.

Previous studies in Cossart’s lab have shown that during infection with Listeria, the bacterium AND the host both reprogram their protein manufacturing using small non-coding RNA molecules like miRNA - pieces of genetic material that are used to selectively regulate the creation of proteins. Here, the researchers used conventional mice and germ-free mice to address the question of whether - and how - the gut microbiota has an effect on the course of infection and on the production of these regulatory miRNA molecules.

When it comes to susceptibility to infection, the results were unequivocal: 24 hours after infection, germ-free mice harbored 10,000 times more L. monocytogenes bacteria in their small intestines and about 1,000 times more Listeria in their mesenteric lymph nodes than did the conventional mice.

At the level of miRNA, however, the differences were not immediately evident: the most highly expressed miRNAs were produced at the same levels in both types of mice and they didn't change much after infection. Nevertheless, the production of five miRNAs decreased after infection only in the conventional mice, indicating that the presence of the microbiota influences the level of miRNA expression.

"We found that even though the intestinal miRNA signature is globally stable, Listeria infection can affect the host miRNA response in a microbiota-dependent manner," says Cossart. When paralleled with the lower susceptibility of the conventional mice to infection, these down-regulated regulatory molecules present an intriguing result, write the authors.

Cossart says that this study and others indicate that miRNA may be involved in protecting the host from infection, but their precise role isn't yet clear. She notes that although this study was conducted in mice, miRNA and the protein coding gene targets they regulate may be very similar in mice and in humans. Cossart and her colleagues are planning to follow up on the work to try and figure out what impacts the changes in miRNA expression mean for the networks of protein-coding genes they regulate.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Wednesday, July 22, 2015
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Immune System 'On Switch' Breakthrough Could Lead to Targeted Drugs
A crucial 'on switch' that boosts the body's defenses against infections has been successfully identified in new scientific research.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!