Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Toxin Kills HIV-Infected Cells

Published: Tuesday, January 28, 2014
Last Updated: Tuesday, January 28, 2014
Bookmark and Share
An HIV-specific poison can kill cells in which the virus is still reproducing despite antiretroviral therapy, a study in mice showed.

Antiretroviral drugs, used to treat people infected with HIV, don’t eliminate the virus. These drugs suppress HIV, often to undetectable levels, allowing infected people to lead longer and healthier lives. However, because traces of HIV remain in the body, infected individuals can still transmit the virus and must continuously take antiretroviral drugs to maintain their health.

Researchers have been searching for a targeted poison that could complement antiretroviral therapy by killing HIV-infected cells. A genetically designed, HIV-specific poison known as 3B3-PE38 was created in 1998 in the laboratories of Dr. Edward A. Berger of NIH’s National Institute of Allergy and Infectious Diseases (NIAID) and Dr. Ira Pastan of NIH’s National Cancer Institute (NCI). This immunotoxin targets HIV-infected cells and, when taken inside cells, shuts down protein synthesis and triggers cell death.

For the new study, the NIH researchers teamed with Dr. J. Victor Garcia and colleagues at the University of North Carolina School of Medicine, where the experiments were performed. Their work appeared in PLOS Pathogens on January 9, 2014.

The scientists studied 40 mice that were bioengineered to have a human immune system. The mice were infected with HIV. After several months, the mice were given a combination of antiretroviral drugs for 4 weeks. Half the animals subsequently received a 2-week dose of the 3B3-PE38 immunotoxin to complement the antiretrovirals, while the other half continued receiving antiretrovirals alone.

Compared to antiretrovirals alone, the addition of the immunotoxin significantly reduced the number of cells with detectable virus in multiple organs. It also lowered the level of HIV in the blood.

These and previous findings suggest that immunotoxin treatment, when added to antiretroviral therapy, could help keep HIV in remission. The ultimate goal for such treatments would be to eliminate or control HIV infections well enough to allow people to live without a lifetime of continuous antiretroviral therapy.

“This study shows that it's possible to attack and kill hidden HIV-infected cells that standard therapy can't touch,” Garcia says. While these results provide a proof of concept, much study will need to be done before the approach could be used in the clinic.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Starting Antiretroviral Treatment Early Improves Outcomes for HIV-infected Individuals
NIH-funded trial results likely will impact global treatment guidelines.
Thursday, May 28, 2015
For Most Children with HIV and Low Immune Cell Count, Cells Rebound After Treatment
NIH-funded study finds T-cell level returns to normal with time.
Saturday, March 28, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Autoimmune Disease Super-Regulators Uncovered
Scientists discovered key genetic switches, called super-enhancers, involved in regulating the human immune system.
Tuesday, March 17, 2015
NIH Announces $41.5 Million in Funding for the Human Placenta Project
Better understanding of the placenta promises to improve the health of mothers and children.
Tuesday, March 03, 2015
NIH-funded Scientists Create Potential Long-acting HIV Therapeutic
New molecule also might prevent HIV infection.
Tuesday, February 24, 2015
Link Between Powerful Gene Regulatory Elements and Autoimmune Diseases Revealed
Findings point to potential drug targets.
Thursday, February 19, 2015
NIH-Sponsored HIV Vaccine Trial Launches In South Africa
Early-stage trial aims to build on RV144 results.
Thursday, February 19, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Candidate H7N9 Avian Flu Vaccine Works Better With Adjuvant
Results of large NIH-sponsored trial demonstrate improved vaccine response when an adjuvant was used.
Wednesday, October 08, 2014
NIH Awards Seven New Vaccine Adjuvant Discovery Contracts
Total funding for these contracts reach approximately $70 million over five years.
Tuesday, October 07, 2014
NIH to Admit Patient Exposed to Ebola Virus for Observation
Ebola patients can be safely cared for at any hospital that follows CDC's infection control recommendations.
Wednesday, October 01, 2014
NIH Announces Network to Accelerate Medicines for Rheumatoid Arthritis and Lupus
Partnership includes support from industry and non-profits.
Friday, September 26, 2014
NIH-Led Scientists Discover HIV Antibody that Binds to Novel Target on Virus
The antibody, 35O22, prevents 62 percent of known HIV strains from infecting cells in the laboratory.
Friday, September 05, 2014
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Immune System 'On Switch' Breakthrough Could Lead to Targeted Drugs
A crucial 'on switch' that boosts the body's defenses against infections has been successfully identified in new scientific research.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!