Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Speeding Validation of Disease Targets

Published: Tuesday, February 04, 2014
Last Updated: Tuesday, February 04, 2014
Bookmark and Share
NIH, industry and non-profits join forces to develop new treatments earlier, beginning with Alzheimer’s, type 2 diabetes, and autoimmune disorders.

The National Institutes of Health, 10 biopharmaceutical companies and several nonprofit organizations today launched an unprecedented partnership to transform the current model for identifying and validating the most promising biological targets of disease for new diagnostics and drug development.

The Accelerating Medicines Partnership (AMP) aims to distinguish biological targets of disease most likely to respond to new therapies and characterize biological indicators of disease, known as biomarkers. Through the Foundation for the NIH (FNIH), AMP partners will invest more than $230 million over five years in the first projects, which focus on Alzheimer’s disease, type 2 diabetes, and the autoimmune disorders rheumatoid arthritis and systemic lupus erythematosus (lupus).

A critical and groundbreaking element of the partnership is the agreement that the data and analyses generated will be made publicly available to the broad biomedical community. The three- to five-year, milestone-driven pilot projects in these disease areas could set the stage for broadening AMP to other diseases and conditions.

“Patients and their caregivers are relying on science to find better and faster ways to detect and treat disease and improve their quality of life,” said NIH Director Francis S. Collins, M.D., Ph.D. “Currently, we are investing a great deal of money and time in avenues with high failure rates, while patients and their families wait. All sectors of the biomedical enterprise agree that new approaches are sorely needed.”

“The good news is that recent dramatic advances in basic research are opening new windows of opportunity for therapeutics,” continued Dr. Collins. “But this challenge is beyond the scope of any one of us and it’s time to work together in new ways to increase our collective odds of success. We believe this partnership is an important first step and represents the most sweeping effort to date to tackle this vital issue.”

As a result of technological revolutions in genomics, imaging, and more, researchers have been able to identify many changes in genes, proteins, and other molecules that predispose to disease and influence disease progression. While researchers have identified thousands of such biological changes that hold promise as biomarkers and drug targets, only a small number have been pursued. Choosing the wrong target can result in failures late in the development process, costing time, money, and ultimately, lives. Currently, developing a drug from early discovery through U.S. Food and Drug Administration approval takes well over a decade and has a failure rate of more than 95 percent. As a consequence, each success costs more than $1 billion.

“The AMP rallies scientific key players of the innovation ecosystem in a more unified way to address one of the key challenges to Biopharma drug discovery and development,” said Mikael Dolsten, M.D., Ph.D., President of Worldwide Research and Development at Pfizer. “This type of novel collaboration will leverage the strengths of both industry and NIH to ensure we expedite translation of scientific knowledge into next generation therapies to address the urgent needs of Alzheimer’s, diabetes and RA/lupus patients.”

AMP has been more than two years in the making, with intense interactions between scientists in the public and private sectors, progressive refinement of the goals, strategy development support from the Boston Consulting Group, and scientific project and partnership management by the FNIH. Through this effort, AMP partners have developed research plans and are sharing costs, expertise, and resources in an integrated governance structure that enables the best informed contributions to science from all participants.

The research highlights for each disease area are:

Alzheimer’s disease

• Identify biomarkers that can predict clinical outcomes by incorporating an expanded set of biomarkers into four major NIH-funded clinical trials, which include industry support, designed to delay or prevent disease.

• Conduct large-scale, systems biology analyses of human patient brain tissue samples with Alzheimer’s disease to validate biological targets that play key roles in disease progression, and increase understanding of molecular networks involved in the disease, to identify new potential therapeutic targets.

Type 2 diabetes

• Build a knowledge portal of DNA sequence, functional genomic and epigenomic information, and clinical data from studies on type 2 diabetes and its heart and kidney complications. The portal will include existing data and new data from studies involving 100,000–150,000 individuals. The rich collection of curated and collated information in this portal will provide an opportunity to identify the most promising therapeutic targets for diabetes from the growing mountain of potentially relevant data.

• Focus on DNA regions that might be critical for the development or progression of type 2 diabetes and search for natural variations in targeted populations that might predict the likelihood of success of drug development aimed at these targets.

Rheumatoid arthritis and lupus

• Collect and analyze tissue and blood samples from people with rheumatoid arthritis and lupus to pinpoint biological changes at the single cell level, to allow comparisons across the diseases and provide insights into key aspects of the disease process.

• Identify differences between rheumatoid arthritis patients who respond to current therapies and those who do not, and provide a better systems-level understanding of disease mechanisms in RA and lupus.

Highly collaborative steering committees with representation from public- and private-sector partners will be established for each disease area to oversee the research plans. The steering committees will be managed by FNIH under the direction of an AMP executive committee comprised of leaders from NIH, industry, the FDA, and patient advocacy organizations.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Starting Antiretroviral Treatment Early Improves Outcomes for HIV-infected Individuals
NIH-funded trial results likely will impact global treatment guidelines.
Thursday, May 28, 2015
For Most Children with HIV and Low Immune Cell Count, Cells Rebound After Treatment
NIH-funded study finds T-cell level returns to normal with time.
Saturday, March 28, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Autoimmune Disease Super-Regulators Uncovered
Scientists discovered key genetic switches, called super-enhancers, involved in regulating the human immune system.
Tuesday, March 17, 2015
NIH Announces $41.5 Million in Funding for the Human Placenta Project
Better understanding of the placenta promises to improve the health of mothers and children.
Tuesday, March 03, 2015
NIH-funded Scientists Create Potential Long-acting HIV Therapeutic
New molecule also might prevent HIV infection.
Tuesday, February 24, 2015
Link Between Powerful Gene Regulatory Elements and Autoimmune Diseases Revealed
Findings point to potential drug targets.
Thursday, February 19, 2015
NIH-Sponsored HIV Vaccine Trial Launches In South Africa
Early-stage trial aims to build on RV144 results.
Thursday, February 19, 2015
Stem Cell Transplants May Halt Progression of Multiple Sclerosis
NIH-funded study yields encouraging early results.
Tuesday, December 30, 2014
Candidate H7N9 Avian Flu Vaccine Works Better With Adjuvant
Results of large NIH-sponsored trial demonstrate improved vaccine response when an adjuvant was used.
Wednesday, October 08, 2014
NIH Awards Seven New Vaccine Adjuvant Discovery Contracts
Total funding for these contracts reach approximately $70 million over five years.
Tuesday, October 07, 2014
NIH to Admit Patient Exposed to Ebola Virus for Observation
Ebola patients can be safely cared for at any hospital that follows CDC's infection control recommendations.
Wednesday, October 01, 2014
NIH Announces Network to Accelerate Medicines for Rheumatoid Arthritis and Lupus
Partnership includes support from industry and non-profits.
Friday, September 26, 2014
NIH-Led Scientists Discover HIV Antibody that Binds to Novel Target on Virus
The antibody, 35O22, prevents 62 percent of known HIV strains from infecting cells in the laboratory.
Friday, September 05, 2014
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Immune System 'On Switch' Breakthrough Could Lead to Targeted Drugs
A crucial 'on switch' that boosts the body's defenses against infections has been successfully identified in new scientific research.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!