Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

$3M NIH Grant Enables Baylor International HIV/AIDS Program

Published: Wednesday, February 19, 2014
Last Updated: Wednesday, February 19, 2014
Bookmark and Share
Researchers to study genetic differences of disease in sub-Saharan African children.

A $3 million, three-year grant from the National Institutes of Health will enable researchers from the Baylor International Pediatric AIDS Initiative at Texas Children’s Hospital to study the genetic factors that affect the progression of tuberculosis and HIV in one of the largest populations infected with the diseases yet to be studied– children in sub-Saharan Africa.

The grant will establish The Collaborative African Genomics Network (CAfGEN) and include collaborators from two BIPAI sites - the Botswana-Baylor Children’s Centre of Excellence and the Baylor-Uganda Children’s Clinical Center of Excellence, along with Makerere University in Uganda, the University of Botswana, and Baylor College of Medicine.  

Working to improve treatments
“Advanced genetic and genomic technologies have the promise to transform our understanding and approach to health and human diseases,” said Dr. Graeme Mardon, professor of molecular and human genetics and pathology & immunology at Baylor and principal investigator of the Baylor portion of the grant.

The team will use state-of-the-art genomic technologies to study a rare group of HIV-infected children who can control the infection for years without needing anti-retroviral therapy to prevent AIDS. They will also be following a group of HIV positive children infected with tuberculosis to identify new genes associated with disease progression.

Their ultimate goal is to offer improved diagnostics and new therapeutic avenues in tuberculosis and HIV/AIDS.

“Most of the previous genetic studies in HIV were undertaken in non-African, adult populations,” said Dr. Gabriel Anabwani, executive director of the Botswana-Baylor Children’s Center of Excellence and the lead principal investigator of the grant. “There is a great need to study the genetic factors of progression in children; their disease differs considerably from their adult counterparts and they potentially have more to gain from therapeutic advances.”

Genomic expertise
The clinical centers will provide expertise for patient recruitment while the universities will provide local molecular genetic resources. Baylor, home to one of the top-rated genetics programs in the United States, will bring to the partnership access to genomics expertise and resources that will ultimately be transitioned to African researchers and institutions through an extensive training program designed to develop highly-knowledgeable geneticists in African nations.

Other principal investigators include Drs. Oathokwa Nkomazana and Sununguko Mpoloka from the University of Botswana; Dr. Moses Joloba from Makerere University; and Dr. Adeodata Kekitiinwa from the Baylor-Uganda Children’s Clinical Center of Excellence. Other key Baylor investigators include Dr. Neil Hanchard, assistant professor of molecular and human genetics, and Dr. Chester Brown, associate professor of molecular and human genetics and of pediatrics.

The grant will also help establish core genomics facilities in Botswana and Uganda, with trainees from those institutions having the chance to work in several highly-regarded core laboratories at BCM including the Human Genome Sequencing Center, the Laboratory for Translational Genomics in the Children’s Nutrition Research Center, and the Center for Statistical Genetics.

“The excitement of this grant is not only the potential for improved care in childhood HIV, but the improvements in knowledge and infrastructure that will serve the people of Africa for many years to come,” said Kekitiinwa. 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Baylor, TGen Collaborate on Personalized Cancer Treatment Options
The companies will collaborate on precision medicine for cancer patients by offering liquid biopsies, performing gene sequencing, conducting clinical trials, and creating personalized vaccines.
Tuesday, May 26, 2015
Massimo Pietropaolo Named McNair Scholar at Baylor
World renowned physician-scientist in type 1 diabetes research, Dr. Massimo Pietropaolo, has been named McNair Scholar at Baylor College of Medicine.
Wednesday, October 29, 2014
Scientific News
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!