Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Yale Team Implants Human Innate Immune Cells in Mice

Published: Tuesday, March 18, 2014
Last Updated: Tuesday, March 18, 2014
Bookmark and Share
Groundbreaking study has reproduced human immune function at a level not seen previously.

Overcoming a major limitation to the study of the origins and progress of human disease, Yale researchers report that they have transplanted human innate immune cells into mouse models, which resulted in human immune responses. This groundbreaking study has reproduced human immune function at a level not seen previously, and could significantly improve the translation of knowledge gained from mouse studies into humans. The study is published online in Nature Biotechnology.

The innate immune system is the body’s first line of defense against bacteria and viruses, and provides the adaptive immune system with the necessary information to create custom-made B and T cells that target specific bacterial or viral pathogens. Humanized mice are often used for studies of human immune responses, but until now the translation has been imperfect because existing mouse models do not permit efficient development of human innate immune cells.

The Yale team was able to overcome this obstacle by combining human versions of four genes encoding cytokines — proteins that support immune cell development — when transplanting a human immune system into the mouse. These cytokines support the development and functions of many elements of the innate immune system.

Further, the researchers observed that transplanted disease-fighting human macrophage cells were able to infiltrate a human tumor graft in the mouse strains in a manner similar to what happens in human patients. The authors report that the mice demonstrated a human innate immune response that is essential for early response to foreign invaders.

“It was a lengthy effort to express all those human genes in the mouse, and then to transplant a human immune system,” said first author Anthony Rongvaux, associate research scientist in the Department of Immunobiology at Yale School of Medicine. “But in the end, the result is remarkable. This new model will now allow us to address important questions that remain unanswered about how the human immune system fights infection and cancer.”

“This humanized innate immune system may prove extremely valuable in studying human health and pathology, and may lead to development of new therapies for human disease,” said senior author Richard Flavell, chair and Sterling Professor of Immunobiology at Yale School of Medicine, a member of Yale Cancer Center, and a Howard Hughes Medical Institute investigator.

Other authors are Tim Willinger, Till Strowig, Sofia Gearty, Stephanie Halene, and Lino Teichmann of Yale; Jan Martinek, Florentina Marches, and Karolina Palucka of Baylor University; 
and Yasuyuki Saito and Markus Manz of University Hospital Zurich.

This study was the fruition of a long-term grant from the Bill and Melinda Gates Foundation’s Grand Challenges in Global Health Initiative, which funded the original collaboration between Yale and Regeneron Pharmaceuticals. It was also supported by grants from the National Institutes of Health (CA156689, CA129350, CA84512, and CA140602); the University of Zurich Clinical Research Program; the Juvenile Diabetes Research Foundation
; the Connecticut Stem Cell Research Grants Program; the Baylor Health Care System Foundation; an Institutional Research Grant 58-012-54 from the American Cancer Society; and 
the Leukemia and Lymphoma Society.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Life-Extending Hormone Bolsters Immunity
A hormone that extends lifespan in mice by 40% is produced by specialized cells in the thymus gland, according to a new study by Yale School of Medicine researchers.
Wednesday, January 13, 2016
Creating More Potent Vaccines
Yale researchers uncovered a new role for a type of immune cell, known as regulatory T cells, in promoting long-term immunity.
Wednesday, July 08, 2015
Researchers Solve Multiple Sclerosis Puzzle
Yale study shows the role that T cells play in MS.
Monday, May 18, 2015
New Tool To Explore Mysteries Of The Immune System
Yale scientists use CyTOF to study a range of conditions.
Monday, April 20, 2015
Cold Virus Replicates Better At Cooler Temperatures
Study shows that the immune response to rhinovirus is influenced by temperature.
Tuesday, January 06, 2015
New Class of Synthetic Molecules Mimics Antibodies
A Yale University lab has crafted the first synthetic molecules that have both the targeting and response functions of antibodies.
Wednesday, December 24, 2014
Protein Predicts Response To New Immunotherapy Drug
Trial shows that response to treatment may be predicted by the presence of an immune-suppressing protein in non-cancerous immune cells.
Friday, November 28, 2014
Immune System Surprise Hints at New Strategy for Fighting HIV
Surprising twist may open a new avenue in the fight.
Tuesday, November 18, 2014
Immune Cells get Cancer-Fighting Boost From Nanomaterials
Yale researchers used bundled carbon nanotubes to incubate cytotoxic T cells.
Monday, August 18, 2014
Commonly Used Drugs May Not Be Effective Against Autoimmune Illness
The study appears in the Cell Press journal Immunity.
Tuesday, March 18, 2014
Lung Disease and Melanoma: a Common Molecular Mechanism?
Researchers have solved a biological mystery about the common genesis of many serious diseases such as asthma and metastatic melanoma.
Monday, September 02, 2013
Drug Preserves Beta Cells in New Cases of Type 1 Diabetes
A drug in clinical trials has been shown to preserve insulin-producing pancreatic beta cells in nearly half of subjects newly diagnosed with type 1 diabetes.
Tuesday, August 06, 2013
Nature’s Own Nanoparticles Harnessed to Target Disease
Using a novel form of immune-genetic therapy, researchers have successfully inhibited a strong immune allergic inflammatory response in the skin of mice.
Friday, July 12, 2013
Promising Drug Prevents Cancer Cells from Shutting Down Immune System
An investigational drug that targets the immune system’s ability to fight cancer is showing promising results in Yale Cancer Center (YCC) patients.
Monday, June 10, 2013
Combined Immunotherapy Shows Promising Results Against Advanced Melanoma
Combining two cancer immunotherapy drugs in patients with advanced melanoma produced rates of tumor regression that appeared greater than in prior trials with either drug alone.
Monday, June 10, 2013
Scientific News
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
Flesh-Eating Bacteria Work Together
Scientists recently discovered different strains of deadly flesh-eating bacteria working together to spread infection and they now have a better understanding of the role of the toxins they produce. The discovery could change how the illness and other diseases are treated.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!