Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Immune Organ Regenerated in Mice

Published: Tuesday, April 08, 2014
Last Updated: Tuesday, April 08, 2014
Bookmark and Share
Scientists have for the first time used regenerative medicine to fully restore a degenerated organ in a living animal.

The team from the Medical Research Council (MRC) Centre for Regenerative Medicine, at the University of Edinburgh, rebuilt the thymus of very old mice by reactivating a natural mechanism that gets shut down with age. 

The regenerated thymus was very similar to one in a young mouse in terms of structure and the genes expressed. The function of the organ was also restored, and mice receiving the treatment began making more T cells – a type of white blood cell important in fighting infection. However, the researchers do not yet know if the immune system of the older mice was strengthened. The research is published today in the journal Development.

Professor Clare Blackburn from the MRC Centre for Regenerative Medicine, at the University of Edinburgh, who led the research, said:

“By targeting a single protein, we have been able to almost completely reverse age-related shrinking of the thymus. Our results suggest that targeting the same pathway in humans may improve thymus function and therefore boost immunity in elderly patients, or those with a suppressed immune system. However, before we test this in humans we need to carry out more work to make sure the process can be tightly controlled.”

The thymus, located in front of the heart, is the first organ to deteriorate as we age. This shrinking is one of the main reasons our immune system becomes less effective and we lose the ability to fight off new infections, such as flu, as we get older. 

Researchers targeted a key part of this process – a protein called FOXN1, which helps to control how important genes in the thymus are switched on. They used genetically modified mice to enable them to increase levels of this protein using chemical signals. By doing so they managed to instruct immature cells in the thymus – similar to stem cells – to rebuild the organ in the older mice. The regenerated thymus was more than twice the size than in the untreated mice. 

Dr Rob Buckle, Head of Regenerative Medicine at the MRC, said:

“One of the key goals in regenerative medicine is harnessing the body’s own repair mechanisms and manipulating these in a controlled way to treat disease. This interesting study suggests that organ regeneration in a mammal can be directed by manipulation of a single protein, which is likely to have broad implications for other areas of regenerative biology.”

Previous attempts to provoke thymus regeneration have involved using sex hormones, but these have resulted in only temporary recovery of size and function of the organ. In this study, the recovery of the thymus was sustainable, but more work is needed to ensure there are no unintended consequences of increasing FOXN1.

The research was funded by Leukaemia and Lymphoma Research, the Darwin Trust of Edinburgh, the MRC and the European Union.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Shows Blocking Brain Inflammation Could Help Alzheimer's
The research was jointly funded by the Medical Research Council (MRC) and Alzheimer’s Research UK.
Saturday, January 09, 2016
Making Vaccines More Effective In The Elderly
Compound shown to restore the immune system’s inbuilt memory.
Tuesday, November 11, 2014
New Type of Blood Stem Cell Could Help Solve Platelet Shortage
Scientists have identified a new type of bone marrow stem cell in mice that is primed to produce large numbers of vital blood-clotting platelets.
Tuesday, August 13, 2013
Vitamin D Could Provide New and Effective Treatments for Asthma
Vitamin D has the potential to significantly reduce the symptoms of asthma, according to a new study from the Medical Research Council (MRC).
Monday, May 20, 2013
Scientific News
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Treating Sepsis with Marine Mitochondria
Mitochondrial alternative oxidase from a marine animal combats bacterial sepsis.
Culex Mosquitoes Do Not Transmit Zika
A study of the Culex species mosquito appears to show that the species does not transmit Zika virus.
Bacteria Use Ranking Strategy to Fight Off Viruses
Researchers have explained why microbes store virus confrontation information sequentially, with most recent attacks first.
Molecular Switch Aids Immune Therapy
Researchers identify strategy to maximise effectiveness of immune therapy through molecular switch controlling immune suppression.
Reprogramming Lymph Nodes to Fight MS
Bioengineers work to reprogram lymph node function to fight multiple sclerosis.
Antibodies Block Norovirus’ Entrance into Cells
Scientists have uncovered a mechanism in the human body that targets and successfully blocks noroviruses.
Probe Detects Histone Modifications in Cells
Scientists have developed an antibody probe that can be used to monitor the dynamics of histone modification.
Gut Pathogens Thrive on Body's Tissue-Repair Mechanism
Researcher have discovered that harm caused by pathogens in the intestinal tract benefit from immune system response to damaged intestinal lining.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!