Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Find Influenza has an Achilles’ Heel

Published: Friday, April 11, 2014
Last Updated: Friday, April 11, 2014
Bookmark and Share
The findings pave the way for an urgently needed therapy that is highly effective against the flu virus and potentially other viral infections.

Flu epidemics cause up to half a million deaths worldwide each year, and emerging strains continually threaten to spread to humans and cause even deadlier pandemics. A study by McGill University professor Maziar Divangahi published by Cell Press on April 10 in the journal Immunity reveals that a drug that inhibits a molecule called prostaglandin E2 (PGE2) increases survival rates in mice infected with a lethal dose of the H1N1 flu virus. 

“Drugs that specifically target PGE2 pathways have already been developed and tested in animals, so our results have excellent potential for clinical translation, not only for the treatment of influenza, but other viral respiratory infections that interact with similar host immune pathways,” says senior study author Divangahi, who is also a member of the Infectious and Immunity Axis at the Research Institute of the McGill University Health Centre (RI-MUHC). 
 

Persistent threat to human health
Despite the worldwide use of vaccination and other antiviral interventions, the flu virus remains a persistent threat to human health. To investigate molecular pathways that could be targeted by new interventions, Divangahi, an assistant professor in the Faculty of Medicine (Department of Microbiology and Immunology), and his team focussed on drugs such as aspirin and ibuprofen,  commonly used to manage flu-like symptoms. By inhibiting a molecule called cyclooxygenase (COX), ibuprofen and other nonsteroidal anti-inflammatory drugs (NSAIDs) lower the production of five major prostanoids—immune molecules that contribute to pain and fever.

“But since these drugs inhibit all prostanoids, each may contribute differently towards the immunity against influenza virus,” says Francois Coulombe, a McGill Ph.D. student and the study’s first author. “Understanding their individual role is crucial in developing a new therapy.” 

Enhanced antiviral immunity
Divangahi’s research team found that mice genetically engineered to lack a member of the prostanoid family, PGE2, showed remarkably enhanced immunity to flu infection. Most importantly, the vast majority of these mice infected with a lethal dose of the H1N1 flu virus survived. Similarly, mice treated with a compound that inhibits PGE2 showed enhanced antiviral immunity and produced better survival rates following infection with a lethal dose of the flu virus compared with untreated mice.

“Previous studies produced conflicting results due to the   inhibition of all prostanoids, not just PGE2,” Divangahi says. “Our findings suggest that different prostaglandins have different roles in antiviral immunity and that specific inhibition of PGE2 will be an effective therapy against influenza viral infection by boosting immune responses.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

His and Hers Pain Circuitry in the Spinal Cord
New animal research reveals fundamental sex differences in how pain is processed.
Monday, July 06, 2015
Researchers Find Influenza has an Achilles’ Heel
The findings pave the way for an urgently needed therapy that is highly effective against the flu virus and potentially other viral infections.
Friday, April 11, 2014
Scientific News
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
Flesh-Eating Bacteria Work Together
Scientists recently discovered different strains of deadly flesh-eating bacteria working together to spread infection and they now have a better understanding of the role of the toxins they produce. The discovery could change how the illness and other diseases are treated.
Utilizing Antibodies from Ebola Survivors
A collaborative team from The University of Texas Medical Branch at Galveston, Vanderbilt University, The Scripps Research Institute and Integral Molecular Inc. have learned that antibodies in the blood of people who have survived a strain of the Ebola virus can kill various types of Ebola.
Antibiotic Use in Early Life Disrupts Gut Microbiota
The use of antibiotics in early childhood interferes with normal development of the intestinal microbiota, shows research conducted at the University of Helsinki.
Easier Diagnosis for Fungal Infection of the Lungs
A new clinical imaging method developed in collaboration with a University of Exeter academic may enable doctors to tackle one of the main killers of patients with weakened immune systems sooner and more effectively.
Mitochondrial Troublemakers Unmasked in Lupus
Drivers of autoimmune disease inflammation discovered in the traps of pathogen-capturing white blood cells.
Important Regulator of Immune System Decoded
Plasma cells play a key role in our immune system. Now scientists at the Research Institute of Molecular Pathology (IMP) in Vienna, Austria, and at the Walter and Eliza Hall Institute (WEHI) in Melbourne, Australia, succeeded in characterizing a central regulator of plasma cell function.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!