Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Make Connection Between Genetic Variation and Immune System

Published: Tuesday, May 13, 2014
Last Updated: Tuesday, May 13, 2014
Bookmark and Share
Researchers demonstrate how genetic variations can influence immune cell function.

Researchers from Brigham and Women's Hospital (BWH), Harvard Medical School (HMS), the Broad Institute of MIT and Harvard, Massachusetts General Hospital (MGH), and University of Chicago report findings demonstrating how genetic variations among healthy, young individuals can influence immune cell function.

Many of those variants are also genetic risk factors for common diseases such as Alzheimer's disease, diabetes, and multiple sclerosis later in life, offering new insight into disease pathology.

The study was published in the May 2, 2014 issue of Science.

"Over the last decade, geneticists have identified hundreds of genetic risk factors for several human diseases, but the functional consequences of those factors on relevant cells are largely unknown," said Towfique Raj, PhD, BWH Department of Neurology and a postdoctoral scholar at the Broad Institute, lead study author. "Our study highlights the potential role of immune system cells in human diseases."

The study was conducted as part of the ImmVar Project, which leveraged BWH's PhenoGenetic Project, a "living biobank" of healthy volunteers willing to contribute blood samples to understand how human genetic variations affect how the human body functions.

The researchers recruited a subset of 461 volunteers from the PhenoGenetic Project of African American, East Asian American, or European American ancestry. Two different types of immune cells - T cells and monocytes - were purified from each individual's blood, representing the adaptive and innate arms of immunity, respectively.

The researchers profiled these cells to measure the expression of 19,114 genes in each cell type. They then examined genetic variants throughout the human genome for their effects on gene expression in these two representative populations of immune cells.

They discovered that genetic variation influencing a person's risk for multiple sclerosis, rheumatoid arthritis, and type 1 diabetes is more likely to control gene activity in T cells than in monocytes. In contrast, genetic variation that increases one's risk for neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, shows a striking enrichment of functional effects in monocytes.

"This study shows that our genomes introduce changes in the immune system early on," said Christophe Benoist, MD, PhD, HMS, Broad Institute associate member, and study author. "These changes influence how a person responds to additional risk factors that he or she may encounter over the course of their life, making them more or less susceptible to triggering a disease process such as type 1, or juvenile, diabetes."

"The study focuses our attention on a particular part of the immune system that already exhibits changes caused by Alzheimer risk factors in people in their 20s and 30s," said Philip L. De Jager, MD, PhD, director, BWH Program in Translational NeuroPsychiatric Genomics, associate member at the Broad Institute, senior study author. "Functionally, we cannot say that blood-derived immune cells are the key cell type for Alzheimer's disease. They are likely to be proxies for the infiltrating and resident cells found at the sites of neuropathology. However, these exciting insights encourage us to explore how manipulating these immune cell types may one day slow or contribute to stopping the accumulation of Alzheimer's disease pathology that occurs as each of us ages."

By including volunteers of different genetic ancestries, the researchers also found that genetic variation that alters immune function is highly shared across human populations of different ancestry.

"Our multi-ethnic exploration of innate and adaptive immunity highlights a remarkable level of sharing across human populations of genetic variation influencing immune function, while identifying interesting instances of genetic effects on immune function that are specific to a population," said Nir Hacohen, PhD, MGH and the Broad Institute, study author.

"This study extends the narrative that many of the effects of disease-related genetic variation are specific to a certain context, such as a given immune cell type," said Barbara Stranger, PhD, University of Chicago, senior study author. "Thus, it is clear that further studies must investigate an increasingly complex matrix of cell types and conditions to fully understand the role of human genetic variation in disease."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Cellular Symphony Responsible for Autoimmune Disease
Broad Institute researchers have used a novel approach to increase our understanding of the immune system as a whole.
Monday, November 30, 2015
Researchers Develop a New Means of Killing Harmful Bacteria
Engineered particles are capable of producing toxins that are deadly to targeted bacteria.
Friday, June 26, 2015
Broad Institute & Google Genomics Combine Bioinformatics and Computing Expertise
Both companies explore how to break down major technical barriers that increasingly hinder biomedical research.
Thursday, June 25, 2015
Taking Immune Cells for a Test Drive
Combining biological experimentation on human white blood cells with advanced computational methods can help explain the functional impact of human genetic variation on immune disease.
Monday, March 17, 2014
Charting Microbial Ecosystem of Crohn’s Disease
Study analyzed the microbiomes of 447 newly-diagnosed patients with Crohn’s and 221 healthy individuals.
Thursday, March 13, 2014
Circuitry of Cells Involved in Immunity, Autoimmune Diseases Exposed
Connections point to interplay between salt and genetic factors.
Tuesday, June 18, 2013
Surveying Cells, One At a Time
When studying any kind of population — people or cells — averaging is a useful, if flawed, form of measurement.
Wednesday, May 22, 2013
Succinate Levels Linked to Immune Response and Inflammation
Metabolic intermediate plays major role in alerting the immune system - measuring succinate levels may prove effective diagnostic tool in cancer.
Tuesday, May 07, 2013
Scientific News
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Vaccinations Are More Effective When Administered In The Morning
Research from the University of Birmingham shows that influenza vaccinations have more protective responses when administered in the morning.
Secrets of a Deadly Virus Family Revealed
Scripps Research scientists uncover the glycoprotein structure of LCMV. The findings could guide development of treatments for Lassa fever.
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
Reduced Immune Response Causes Flu Deaths in Older Adults
Yale study suggests that immune response to flu causes death in older people, not the virus.
Exposure To Routine Viruses Makes Mice Better Test Subjects
Study shows that infections make mouse immune system act more like that in humans.
Immune Booster Tested in Advanced Merkel Cell Cancer
The immunotherapy drug produced durable responses in many patients.
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!