Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stanford Researchers Discover Immune System’s Rules of Engagement

Published: Saturday, May 24, 2014
Last Updated: Saturday, May 24, 2014
Bookmark and Share
Study finds surprising similarities in the way immune system defenders bind to disease-causing invaders.

A study led by researchers at Stanford's School of Medicine reveals how T cells, the immune system's foot soldiers, respond to an enormous number of potential health threats.

X-ray studies at the Department of Energy's SLAC National Accelerator Laboratory, combined with Stanford biological studies and computational analysis, revealed remarkable similarities in the structure of binding sites, which allow a given T cell to recognize many different invaders that provoke an immune response.

The research demonstrates a faster, more reliable way to identify large numbers of antigens, the targets of the immune response, which could speed the discovery of disease treatments. It also may lead to a better understanding of what T cells recognize when fighting cancers and why they are triggered to attack healthy cells in autoimmune diseases such as diabetes and multiple sclerosis.

"Until now, it often has been a real mystery which antigens T cells are recognizing; there are whole classes of disease where we don't have this information," said Michael Birnbaum, a graduate student who led the research at the School of Medicine in the laboratory of K. Christopher Garcia, the study's senior author and a professor of molecular and cellular physiology and of structural biology.

"Now it's far more feasible to take a T cell that is important in a disease or autoimmune disorder and figure out what antigens it will respond to," Birnbaum said.

T cells are triggered into action by protein fragments, called peptides, displayed on a cell's surface. In the case of an infected cell, peptide antigens from a pathogen can trigger a T cell to kill the infected cell. The research provides a sort of rulebook that can be used with high success to track down antigens likely to activate a given T cell, easing a bottleneck that has constrained such studies.

Combination Approach

In the study, researchers exposed a handful of mouse and human T-cell receptors to hundreds of millions of peptides, and found hundreds of peptides that bound to each type. Then they compiled and compared the detailed sequence - the order of the chemical building blocks - of the peptides that bound to each T-cell receptor.

From that sample set, which represents just a tiny fraction of all peptides, a detailed computational analysis identified other likely binding matches. Researchers compared the 3-D structures of T cells and their unique receptors bound to different peptides at SLAC's Stanford Synchrotron Research Lightsource (SSRL).

"The X-ray work at SSRL was a key breakthrough in the study," Birnbaum said. "Very different peptides aligned almost perfectly with remarkably similar binding sites. It took us a while to figure out this structural similarity was a common feature, not an oddity - that a vast number of unique peptides could be recognized in the same way."

Researchers also checked the sequencing of the peptides that were known to bind with a given T cell and found striking similarities there, too.

"T-cell receptors are 'cross-reactive,' but in fairly limited ways. Like a multilingual person who can speak Spanish and French but can't understand Japanese, a receptor can engage with a broad set of peptides related to one another," Birnbaum said.

Impact on Biomedical Science

Finding out whether a given peptide activates a specific T-cell receptor has been a historically piecemeal process with a 20 to 30 percent success rate, involving burdensome hit-and-miss studies of biological samples. "This latest research provides a framework that can improve the success rate to as high as 90 percent," Birnbaum said.

"This is an important illustration of how SSRL's X-ray-imaging capabilities allow researchers to get detailed structural information on technically very challenging systems," said Britt Hedman, professor of photon science and science director at SSRL. "To understand the factors behind T-cell-receptor binding to peptides will have major impact on biomedical developments, including vaccine design and immunotherapy."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
Flesh-Eating Bacteria Work Together
Scientists recently discovered different strains of deadly flesh-eating bacteria working together to spread infection and they now have a better understanding of the role of the toxins they produce. The discovery could change how the illness and other diseases are treated.
Utilizing Antibodies from Ebola Survivors
A collaborative team from The University of Texas Medical Branch at Galveston, Vanderbilt University, The Scripps Research Institute and Integral Molecular Inc. have learned that antibodies in the blood of people who have survived a strain of the Ebola virus can kill various types of Ebola.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!