Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Possibilities for Leukaemia Therapy with a Novel Mode of Cancer Cell Recognition

Published: Thursday, June 26, 2014
Last Updated: Thursday, June 26, 2014
Bookmark and Share
A new class of lipids in human leukaemia cells trigger an immune response to kill the cells.

Scientists at A*STAR's Singapore Immunology Network (SIgN) have discovered a new class of lipids in the leukaemia cells that are detected by a unique group of immune cells.

By recognizing the lipids, the immune cells stimulate an immune response to destroy the leukaemia cells and suppress their growth. The newly identified mode of cancer cell recognition by the immune system opens up new possibilities for leukaemia immunotherapy.

Leukaemia is characterized by the accumulation of cancer cells originating from blood cells, in the blood or bone marrow. Current treatments for leukaemia largely involve chemotherapy to eradicate all cancer cells, followed by stem cell transplants to restore healthy blood cells in the patients.

In a recent study reported in the Journal of Experimental Medicine (JEM) online, the team co-led by Dr Lucia Mori and Prof Gennaro De Libero identified a new class of lipids, methyl-lysophosphatidic acids (mLPA), which accumulate in leukaemia cells.

Following which, the team identified a specific group of immune cells, described as mLPA-specific T-cells that are capable of recognizing the mLPA in the leukaemia cells.

The detection triggers an immune response that activates the T cells to kill the leukaemia cells and limits cancer progression. The efficacy of the T cells in killing leukaemia cells was also demonstrated in a mouse model of human leukaemia.

Thus far, only proteins in cancer cells have been known to activate T cells. This study is a pioneer in its discovery of mLPA, and the specific T cells which can identify lipids expressed by cancer cells.

Unlike proteins, lipids in cancer cells do not differ between individuals, indicating that the recognition of mLPA by mLPA-specific T-cells happens in all leukaemia patients. This new mode of cancer cell recognition suggests that the T-cells can potentially be harnessed for a leukaemia immunotherapy that is effective in all patients.

"The identification of mLPA and its role in activating specific T cells is novel. This knowledge not only sheds light on future leukaemia studies, but also complements ongoing leukaemia immunotherapy studies focusing on proteins in cancer cells," said Dr Lucia Mori, Principal Investigator at SIgN. "Current treatments run the risk of failure due to re-growth of residual leukaemia cells that survive after stem cell transplants. T-cell immunotherapy may serve as a complementary treatment for more effective and safer therapeutic approach towards leukaemia."

Professor Laurent Renia, Acting Executive Director of SIgN, said, "At SIgN, we study how the human immune system protects us naturally from infections. We engage in promising disease-specific research projects that ultimately pave the way for the development of treatments and drugs which can better combat these diseases. A pertinent example will be this study; this mode of immune recognition of leukaemia cells is an insightful discovery that will create new opportunities for immunotherapy to improve the lives of leukaemia patients."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protecting the Body from Itself
Scientists advance understanding of autoimmunity with discovery of link between major immune cell types.
Friday, September 26, 2014
Understanding and Improving the Body's Fight Against Pathogens
A*STAR scientists find new targets for modulating antibody response.
Tuesday, September 02, 2014
A*STAR, NUS and NUH Join Forces to Understand Immune Erosion in Elderly
The collaboration with Sanofi Pasteur aims to study the loss of immunity and consequent reduced responsiveness to vaccination in elderly.
Friday, February 14, 2014
Scientists Find a Promising Way To Boost The Body’s Immune Surveillance Via p53
Researchers at A*STAR have discovered a new mechanism involving p53, the famous tumour suppressor, to fight against aggressive cancers.
Thursday, September 26, 2013
Novel Mechanism Discovered in First Line of Immune Defence
Discovery opens doors to developing new therapies to eradicate tumour cells and combat infections.
Tuesday, September 10, 2013
New Strategy to Disarm the Dengue Virus Brings New Hope for a Universal Dengue Vaccine
A new strategy that cripples the ability of the dengue virus to escape the host immune system has been discovered by A*STAR’s Singapore Immunology Network (SIgN).
Wednesday, August 14, 2013
Breakthroughs in Chikungunya Research Spell New Hope for Better Treatment and Protection
A*STAR's SIgN have made great strides in the battle against the infectious disease.
Monday, September 24, 2012
Scientific News
Developing Drug Resistance may be a Matter of Diversity for Tuberculosis
Researchers have probed the bacteria that causes tuberculosis, Mycobacterium tuberculosis, to learn more about how individual bacterial cells change and adapt while in the human body.
Surprising Trait Found in Anti-HIV Antibodies
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.
Some Gut Microbes May Be Keystones of Health
University of Oregon scientists have found that strength in numbers doesn’t hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.
Essential Component of Antiviral Defense Identified
Infectious disease researchers at the University of Georgia have identified a signaling protein critical for host defense against influenza infection.
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Is Allergy the Price We Pay for Our Immunity to Parasites?
New findings help demonstrate the evolutionary basis for allergy.
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
Mucus – the First Line of Defence
Researchers reveal the important role of mucus in building a good defence against invaders.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Gene-Edited Immune Cells Treat ‘Incurable’ Leukaemia
A new treatment that uses ‘molecular scissors’ to edit genes and create designer immune cells programmed to hunt out and kill drug resistant leukaemia has been used at Great Ormond Street Hospital (GOSH).

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos