Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sequencing Identifies Gene Variant Responsible for Lupus

Published: Wednesday, August 20, 2014
Last Updated: Wednesday, August 20, 2014
Bookmark and Share
Research demonstrates it is feasible to identify the individual causes of lupus in patients by using DNA sequencing, allowing doctors to target specific treatments to individual patients.

Lupus is a chronic autoimmune disease that affects one in 700 Australians, predominantly young and middle aged women.

Medical researchers at the Centre for Personalised Immunology, based at the John Curtin School of Medical Research (JCSMR), sequenced the genes of a young girl who suffered a stroke when she was four as a result of her lupus.

“We can now target her specific disease, and make treatments that will benefit her throughout her life,” said lead researcher Dr Julia Ellyard, from the JCSMR.

Researchers identified a variant in the TREX1 gene. This mutation caused the patient’s cells to produce a molecule called interferon-alpha. Clinical trials are already underway for drugs to target interferon-alpha in adults.

Dr Jeff Chaitow, head of rheumatology,  a co-investigator and the patient’s treating clinician at Sydney’s The Children’s Hospital at Westmead, said his young patient, now 10 years old, still needs regular steroids and immune suppressive drugs each day.

“New targeted therapy would be a major benefit in controlling her disease,” he said.

Professor Carola Vinuesa, Co-director of the Centre for Personalised Immunology, said research was showing lupus was primarily caused by defects in only one or a few genes.

“This is the new age of personalised medicine,” she said.

“This study shows that it is possible to unravel the detailed and individual genetic causes of lupus in individuals.

“Lupus is a heterogeneous disease and patients can experience a number of different symptoms. We believe that there are different genetic causes of lupus. Understanding these defective genes and pathways in each individual will help tailor treatments.”

Professor Matthew Cook, Co-director of the Centre for Personalised Immunology, said the results proved the potential benefits of personalised medicine, where doctors will be able to target treatments to individual patients.

“We are optimistic that this represents proof of principle for a new approach to diagnosis and treatment of a range of complex immunological disease,” Professor Cook said.

Results of the research are published in Arthritis and Rheumatology


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Neural Networks Adapt to the Presence of a Toxic HIV Protein
HIV-associated neurocognitive disorders (HAND) afflict approximately half of HIV infected patients.
HIV Protein Manipulates Hundreds of Human Genes
Findings search for new or improved treatments for patients with AIDS.
Breaking the Brain’s Garbage Disposal
The children’s ataxia gene problem turned out to be not such a big deal genetically — it was such a slight mutation that it barely changed the way the cells made the protein.
Flesh-Eating Bacteria Work Together
Scientists recently discovered different strains of deadly flesh-eating bacteria working together to spread infection and they now have a better understanding of the role of the toxins they produce. The discovery could change how the illness and other diseases are treated.
Utilizing Antibodies from Ebola Survivors
A collaborative team from The University of Texas Medical Branch at Galveston, Vanderbilt University, The Scripps Research Institute and Integral Molecular Inc. have learned that antibodies in the blood of people who have survived a strain of the Ebola virus can kill various types of Ebola.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!