Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

MU Researchers Discover Protein's Ability To Inhibit HIV Release

Published: Wednesday, August 27, 2014
Last Updated: Wednesday, August 27, 2014
Bookmark and Share
TIM-family proteins have the ability to block the release of HIV and other viruses.

A family of proteins that promotes virus entry into cells also has the ability to block the release of HIV and other viruses, University of Missouri researchers have found.

“This is a surprising finding that provides new insights into our understanding of not only HIV infection, but also that of Ebola and other viruses,” said Shan-Lu Liu, MD, PhD, associate professor in the MU School of Medicine’s Department of Molecular Microbiology and Immunology.

The study was recently published in the Proceedings of the National Academy of Sciences. Liu, the corresponding author of the study, is also an investigator with the Christopher S. Bond Life Sciences Center at MU.

According to estimates from the Centers for Disease Control and Prevention, more than one million Americans currently are living with HIV infection. AIDS, which stands for acquired immunodeficiency syndrome, is a condition characterized by progressive failure of the immune system. It is caused by the human immunodeficiency virus type 1 (HIV-1).

When HIV-1 or any virus infects a cell, it replicates and spreads to other cells. One type of cellular protein — T cell immunoglobulin and mucin domain, or TIM-1 — has previously been shown to promote entry of some highly pathogenic viruses into host cells. Now, the MU researchers have found that the same protein possesses a unique ability to block the release of HIV-1 and Ebola virus.

“This study shows that TIM proteins keep viral particles from being released by the infected cell and instead keep them tethered to the cell surface,” said Gordon Freeman, PhD, an associate professor of medicine with Harvard Medical School’s Dana-Farber Cancer Institute, who was not affiliated with the study. “This is true for several important enveloped viruses including HIV and Ebola. We may be able to use this insight to slow the production of these viruses.”

Under the supervision of Liu, Minghua Li, a graduate student in the MU Pathobiology Area Program, performed a series of experiments that revealed the protein’s ability to inhibit HIV-1 release, resulting in diminished viral production and replication.

HIV-1 attacks cells that are vital to the body’s immune system, such as T cells. These white blood cells play an important role in the body’s response to infection, but HIV-1 disrupts the cells’ ability to fight back against infection. When the virus enters a host cell, it infects the cell and replicates, producing viral particles that spread to and infect other cells. The researchers found that as the viral particles attempt to bud from, or leave, the infected cell, the TIM-family proteins located on the surface of the cell can attach to lipids on the surface of the viral particle.

These lipids – known as phosphatidylserine (PS) — are normally present on the inner side of the cellular membrane but can be exposed to the outer side upon viral infection. When the TIM-family proteins come in contact with PS, the viral particle becomes attached to the host cell, keeping the particle from being released from the cell. Because TIM-family proteins and PS are present on the surface of the cell and the viral particle, the viral particles get stuck to one another, forming a network of viral particles that accumulate on the surface of the host cell, rather than being released to infect other cells.

By using molecular, biochemical and electron microscopic approaches, the researchers observed the TIM and PS interactions in human cells. The next step is for the researchers to study the biological significance of TIM-family proteins in animals and patients and to determine the fate of the infected cell once it accumulates a buildup of viral particles.

“We are not at the point to draw a conclusion as to whether this is a positive or a negative factor,” Liu said. “However, this discovery furthers our ultimate goal of understanding the biology of TIM-family proteins and potentially developing applications for future antivirus therapies.”

The study, “TIM-Family Proteins Inhibit HIV-1 Release,” is supported in part by the National Institutes of Health and the University of Missouri. In addition to Liu and Li, researchers include Eric Freed, PhD, senior investigator with the National Cancer Institute (NCI) HIV Drug Resistance Program; Sherimay Ablan, biologist with the NCI HIV Drug Resistance Program; Marc Johnson, PhD, associate professor in the MU Department of Molecular Microbiology and Immunology; Chunhui Miao and Matthew Fuller, graduate students in the MU Department of Molecular Microbiology and Immunology; Yi-Min Zheng, MD, MS, senior research specialist with the Christopher S. Bond Life Sciences Center at MU; Paul Rennert, PhD, founder and principal of SugarCone Biotech LLC in Holliston, Massachusetts; and Wendy Maury, PhD, professor of microbiology at the University of Iowa.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bacteria Implicated in Reproductive Disorders
Bacteria harbored in the male reproductive system may be responsible for prostatitis.
Thursday, March 17, 2016
Unraveling the Elusive Structure of HIV Protein
Snapshots of HIV virus’ proteins may help design new ways to fight the disease.
Monday, July 06, 2015
Adult Stem Cells Could Hold Key to Creating Cure for Type 1 Diabetes
Combining bone marrow cells with new drug restores insulin production.
Tuesday, June 04, 2013
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
‘Cellbots’ Chase Down Cancer, Deliver Drugs Directly to Tumors
Programmable T cells shown to be versatile, precise, and powerful in lab studies.
Anti-Inflammatory Drugs Could Strengthen Airway Immunity
Mold toxins can weaken the airways' clearing mechanisms and immunity, but PKC inhibitors showed promise as a treatment.
Antibodies Paving the Way to HIV Vaccine
Researchers uncover factors responsible for the formation of broadly neutralizing HIV antibodies in humans.
Vaccine Against Common Cold Achievable
Researchers suggest that a vaccine against rhinoviruses is possible using variant virus vaccines.
Treating Sepsis with Marine Mitochondria
Mitochondrial alternative oxidase from a marine animal combats bacterial sepsis.
Iron Nanoparticles Make Immune Cells Attack Cancer
Researchers accidentally discover that nanoparticles invented for anemia treatment can trigger the immune system’s ability to destroy tumor cells.
Uncovering Cancer’s ‘Invisibility Cloak’
Researchers discover cancer cell mechanism to become invisible to the body's immune system.
Culex Mosquitoes Do Not Transmit Zika
A study of the Culex species mosquito appears to show that the species does not transmit Zika virus.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!