Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>Videos>This Video
  Videos

Return

Magneto-plasmonic Nanoparticle Platform for Capture, Separation and Enumeration of Rare Cells
SELECTBIO

Detection of disseminated tumor cells or tumor biomarkers in human fluids such as blood, urine, and saliva can provide an accessible tool for cancer detection and therapy monitoring. In particular, accurate quantitation of cancer cells in the bloodstream can help to determine prognosis and monitor the effectiveness of cancer therapy. However, the challenge of detecting circulating tumor cells (CTCs) is their rare occurrence, estimated as one to few CTCs among millions of leukocytes and billions of erythrocytes. Here we address this challenging problem by developing nanoparticle probes with multiple functionalities. Integration of multiple components in a single nanostructure is a challenging task. Most of the existing approaches to synthesis of hybrid nanoparticles require cumbersome multi-step protocols and result in nanostructures with limited tunability of physical and optical properties. Here, we developed a new type of nanoparticles which consist of primary 6 nm iron oxide core-gold shell nanoparticles that form highly uniform spherical assemblies with sizes that can be varied from ca. 70 to 180 nm. The magneto-plasmonic nanoclusters exhibit strong red-NIR absorbance and superparamagnetic properties with a high magnetic moment in an external magnetic field. We conjugated the nanoclusters with monoclonal antibodies specific for tumor biomarkers of breast, colon and skin cancers and demonstrated molecular specific optical and photoacoustic (PA) imaging with high sensitivity. We carried out experiments in whole blood from a normal volunteer spiked with various amounts of cancer cells. It was shown that cell capture efficiency exhibits a linear behavior from 5 to 500 cells per 2.5 mL of the whole blood. Furthermore, we demonstrated that molecular targeted nanoclusters can be used for simultaneous magnetic capture and PA detection of cancer cells in whole blood with greater than 90% capturing efficiency with no laborious processing steps that are commonly used in other cancer cell capture and enumeration assays. The magneto-plasmonic nanoparticle platform is being tested in blood samples of cancer patients with metastatic disease with a very good capture efficiency as compared to FDA approved CellSearch system. Our immunotargeted nanoparticles can be easily adapted to a variety of biomarkers, targeting both surface receptor molecules and intracellular biomarkers of epithelialderived cancer cells. In this presentation we will explore the opportunities afforded by the hybrid magneto-plasmonic nanoparticles and PA imaging for the development of a low cost simple and nearly real-time assays for capture, separation and enumeration of rare cells.

Request more information
Company product page

Scientific News
Culex Mosquitoes Do Not Transmit Zika
A study of the Culex species mosquito appears to show that the species does not transmit Zika virus.
Bacteria Use Ranking Strategy to Fight Off Viruses
Researchers have explained why microbes store virus confrontation information sequentially, with most recent attacks first.
Molecular Switch Aids Immune Therapy
Researchers identify strategy to maximise effectiveness of immune therapy through molecular switch controlling immune suppression.
Reprogramming Lymph Nodes to Fight MS
Bioengineers work to reprogram lymph node function to fight multiple sclerosis.
Antibodies Block Norovirus’ Entrance into Cells
Scientists have uncovered a mechanism in the human body that targets and successfully blocks noroviruses.
Probe Detects Histone Modifications in Cells
Scientists have developed an antibody probe that can be used to monitor the dynamics of histone modification.
Gut Pathogens Thrive on Body's Tissue-Repair Mechanism
Researcher have discovered that harm caused by pathogens in the intestinal tract benefit from immune system response to damaged intestinal lining.
Eisai Establishes AiM Institute
The Andover innovative Medicines (AiM) Institute will develop innovative precision medicines for hard-to-treat conditions.
Antibodies that Target Holes in HIV's Defence Identified
Scientists suggest 'holes' in HIV sugar sheild can be targeted by antibodies.
Arms Race with a Superbug
Scientists have discovered that increased risk of superbug infection can be directly casued by immune system response to invading bacteria.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!