Corporate Banner
Satellite Banner
Immunology
Scientific Community
 
Become a Member | Sign in
Home>Videos>This Video
  Videos

Return

Magneto-plasmonic Nanoparticle Platform for Capture, Separation and Enumeration of Rare Cells
SELECTBIO

Detection of disseminated tumor cells or tumor biomarkers in human fluids such as blood, urine, and saliva can provide an accessible tool for cancer detection and therapy monitoring. In particular, accurate quantitation of cancer cells in the bloodstream can help to determine prognosis and monitor the effectiveness of cancer therapy. However, the challenge of detecting circulating tumor cells (CTCs) is their rare occurrence, estimated as one to few CTCs among millions of leukocytes and billions of erythrocytes. Here we address this challenging problem by developing nanoparticle probes with multiple functionalities. Integration of multiple components in a single nanostructure is a challenging task. Most of the existing approaches to synthesis of hybrid nanoparticles require cumbersome multi-step protocols and result in nanostructures with limited tunability of physical and optical properties. Here, we developed a new type of nanoparticles which consist of primary 6 nm iron oxide core-gold shell nanoparticles that form highly uniform spherical assemblies with sizes that can be varied from ca. 70 to 180 nm. The magneto-plasmonic nanoclusters exhibit strong red-NIR absorbance and superparamagnetic properties with a high magnetic moment in an external magnetic field. We conjugated the nanoclusters with monoclonal antibodies specific for tumor biomarkers of breast, colon and skin cancers and demonstrated molecular specific optical and photoacoustic (PA) imaging with high sensitivity. We carried out experiments in whole blood from a normal volunteer spiked with various amounts of cancer cells. It was shown that cell capture efficiency exhibits a linear behavior from 5 to 500 cells per 2.5 mL of the whole blood. Furthermore, we demonstrated that molecular targeted nanoclusters can be used for simultaneous magnetic capture and PA detection of cancer cells in whole blood with greater than 90% capturing efficiency with no laborious processing steps that are commonly used in other cancer cell capture and enumeration assays. The magneto-plasmonic nanoparticle platform is being tested in blood samples of cancer patients with metastatic disease with a very good capture efficiency as compared to FDA approved CellSearch system. Our immunotargeted nanoparticles can be easily adapted to a variety of biomarkers, targeting both surface receptor molecules and intracellular biomarkers of epithelialderived cancer cells. In this presentation we will explore the opportunities afforded by the hybrid magneto-plasmonic nanoparticles and PA imaging for the development of a low cost simple and nearly real-time assays for capture, separation and enumeration of rare cells.

Request more information
Company product page

Scientific News
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Universal Flu Vaccine in the Works
A new study has demonstrated a potential strategy for developing a flu vaccine with potent, broad protection.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Immune System 'On Switch' Breakthrough Could Lead to Targeted Drugs
A crucial 'on switch' that boosts the body's defenses against infections has been successfully identified in new scientific research.
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!