Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Studies on Domesticated Maize Identify Genes that Evolved from Wild Ancestors

Published: Wednesday, June 06, 2012
Last Updated: Wednesday, June 06, 2012
Bookmark and Share
Studies identify genes that played a role in corn domestication as well as variations and similarities between domesticated maize and its wild relatives.

Maize was likely domesticated in Mexico around 10,000 years ago, and since then humans have continued to radically alter the plant's genetic makeup.

Two new papers by a consortium of international researchers, including many at Cornell, identify genes that played a role in corn domestication as well as variations and similarities between domesticated maize and its wild relatives.

The results, published June 3 in Nature Genetics, will help breeders and geneticists make further advancements.

Cornell researchers, led by Edward Buckler, a U.S. Department of Agriculture-Agricultural Research Station (USDA-ARS) geneticist in Cornell's Institute for Genomic Diversity and Cornell adjunct professor of plant breeding and genetics, organized the effort. The USDA-ARS and Cornell researchers also led many aspects of the sequencing, statistics and bioinformatics.

In the first paper, a research team led by Doreen Ware, a computational biologist with the USDA-ARS and an adjunct assistant professor at the Cold Spring Harbor Laboratory, used advanced techniques to sequence the entire genomes of domesticated Zea mays corn and a wild maize relative, Tripsacum, a grass from a sister genus that grows and overwinters in the eastern United States.

While Tripsacum has a larger genome, the researchers found tremendous overlap between it and maize, according to the paper. Due to the similarities, "we may be able to combine the natural variation out there for use in breeding and genetics," Buckler said. The findings suggest that such traits as perennialism and frost- and drought-tolerance found in Tripsacum can likely be integrated into maize.

The maize genome -- which is six times larger than the rice genome and almost as large as the human genome -- is mostly composed of repetitious and "junk" DNA. Scientists have debated whether junk regions between genes matter for phenotype and traits. The genetic analysis reported in the paper showed that the junk regions were important for controlling natural variation. "It looks like those repetitive regions of the genome contribute to about 20 to 40 percent of natural variation," said Buckler.

In the second paper, a research team led by Jeffrey Ross-Ibarra, assistant professor in the Department of Plant Sciences and the Genome Center at the University of California-Davis, analyzed the DNA sequence of 75 wild maize, landraces (locally adapted maize types with traits selected over centuries by rural farmers) and improved (scientifically altered) maize lines, and identified the genes underlying maize domestication and evolution.

"We went from a bushy plant with small ears to a robust plant with big ears today adapted to agricultural fields," said Buckler. "It took well over 1,000 genes to go from that adaptation to the current one, and this study helps identify those 1,000 genes."

Identifying those key genes in modern corn allows geneticists and breeders to target them when using natural variation or transgenics to create varieties with new, desirable traits.

The researchers also found that environment plays a big role in determining which genes control traits. For example, genes that control high yield in a temperate climate were found to be very different from genes that control productivity in the tropics.

The research team also included scientists from the University of California-Davis, Beijing Genomics Institute, Cold Spring Harbor Laboratory, Arizona State University, University of Wisconsin-Madison, University of Minnesota and the University of Missouri.

The studies were funded by the National Science Foundation, USDA, Chinese Ministry of Agriculture, Shenzhen Municipal Government, and U.S. Department of Energy.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Computer Model Reveals Cancer's Energy Source
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.
Tuesday, August 19, 2014
Scientific News
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
UEA Research Could Help Build Computers From DNA
New research from the University of East Anglia could one day help build computers from DNA.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Preserving Fleeting Digital Information with DNA
A team has demonstrated that DNA they encapsulated can preserve information for at least 2,000 years, and they’re now working on a filing system to make it easier to navigate.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!