Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Studies on Domesticated Maize Identify Genes that Evolved from Wild Ancestors

Published: Wednesday, June 06, 2012
Last Updated: Wednesday, June 06, 2012
Bookmark and Share
Studies identify genes that played a role in corn domestication as well as variations and similarities between domesticated maize and its wild relatives.

Maize was likely domesticated in Mexico around 10,000 years ago, and since then humans have continued to radically alter the plant's genetic makeup.

Two new papers by a consortium of international researchers, including many at Cornell, identify genes that played a role in corn domestication as well as variations and similarities between domesticated maize and its wild relatives.

The results, published June 3 in Nature Genetics, will help breeders and geneticists make further advancements.

Cornell researchers, led by Edward Buckler, a U.S. Department of Agriculture-Agricultural Research Station (USDA-ARS) geneticist in Cornell's Institute for Genomic Diversity and Cornell adjunct professor of plant breeding and genetics, organized the effort. The USDA-ARS and Cornell researchers also led many aspects of the sequencing, statistics and bioinformatics.

In the first paper, a research team led by Doreen Ware, a computational biologist with the USDA-ARS and an adjunct assistant professor at the Cold Spring Harbor Laboratory, used advanced techniques to sequence the entire genomes of domesticated Zea mays corn and a wild maize relative, Tripsacum, a grass from a sister genus that grows and overwinters in the eastern United States.

While Tripsacum has a larger genome, the researchers found tremendous overlap between it and maize, according to the paper. Due to the similarities, "we may be able to combine the natural variation out there for use in breeding and genetics," Buckler said. The findings suggest that such traits as perennialism and frost- and drought-tolerance found in Tripsacum can likely be integrated into maize.

The maize genome -- which is six times larger than the rice genome and almost as large as the human genome -- is mostly composed of repetitious and "junk" DNA. Scientists have debated whether junk regions between genes matter for phenotype and traits. The genetic analysis reported in the paper showed that the junk regions were important for controlling natural variation. "It looks like those repetitive regions of the genome contribute to about 20 to 40 percent of natural variation," said Buckler.

In the second paper, a research team led by Jeffrey Ross-Ibarra, assistant professor in the Department of Plant Sciences and the Genome Center at the University of California-Davis, analyzed the DNA sequence of 75 wild maize, landraces (locally adapted maize types with traits selected over centuries by rural farmers) and improved (scientifically altered) maize lines, and identified the genes underlying maize domestication and evolution.

"We went from a bushy plant with small ears to a robust plant with big ears today adapted to agricultural fields," said Buckler. "It took well over 1,000 genes to go from that adaptation to the current one, and this study helps identify those 1,000 genes."

Identifying those key genes in modern corn allows geneticists and breeders to target them when using natural variation or transgenics to create varieties with new, desirable traits.

The researchers also found that environment plays a big role in determining which genes control traits. For example, genes that control high yield in a temperate climate were found to be very different from genes that control productivity in the tropics.

The research team also included scientists from the University of California-Davis, Beijing Genomics Institute, Cold Spring Harbor Laboratory, Arizona State University, University of Wisconsin-Madison, University of Minnesota and the University of Missouri.

The studies were funded by the National Science Foundation, USDA, Chinese Ministry of Agriculture, Shenzhen Municipal Government, and U.S. Department of Energy.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Computer Model Reveals Cancer's Energy Source
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.
Tuesday, August 19, 2014
Scientific News
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Influenza A Viruses More Likely To Emerge In East Asia Than North America
Novel strains of influenza A are more likely to emerge in East Asia than in North America, according to a global analysis by the One Health Institute at the UC Davis School of Veterinary Medicine and EcoHealth Alliance.
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
The Final Word on STAP
Researchers fail to replicate STAP study; computational analysis reveals genomic inconsistency.
Study Adds to Evidence That Viruses Are Alive
A new analysis supports the hypothesis that viruses are living entities that share a long evolutionary history with cells, researchers report.
CSI -- On The Metabolite's Trail
Bioinformaticians at the University of Jena make the most efficient search engine for molecular structures available online.
Potential Ovarian Cancer Biomarker Isolated
Researchers from North Carolina State University utilized a highly sensitive mass spectrometry analysis to identify and measure difficult-to-detect N-glycan biomarkers associated with ovarian cancers in stages I – IV.
Smartphone App to Monitor Serious Blood Disorder
A researcher from Florida Atlantic University has come up with a unique way to monitor sickle cell disease -- a serious blood disorder -- using a smart phone.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos