Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

An ABSOLUTEly New View of the Cancer Genome

Published: Friday, June 15, 2012
Last Updated: Friday, June 15, 2012
Bookmark and Share
New method called ABSOLUTE sheds light on the evolution and population structure of cells within tumors.

Scientists hoping to unlock cancer’s secrets face a formidable challenge. Sophisticated research tools have allowed them to peer into the genomes of cancer cells and identify many DNA alterations that may underlie malignancy, yet quantifying those changes is no simple task.

For example, the genome of a cancer cell is drastically disorganized, often with large missing chunks or extra copies of whole chromosomes. Some tumor cells have several-fold the amount of DNA as healthy cells.

In addition, tumor samples used in research are never 100% pure - they always contain some fraction of genetically unaltered cells. These are just some of the things that can complicate the search for genetic alterations in cancer.

Researchers at the Broad Institute of MIT and Harvard developed a new computational method, called ABSOLUTE, to help overcome these complications.

ABSOLUTE infers each sample’s purity and “ploidy” - the number of genomes in each cancer cell - from relative measures of DNA mass to calculate genetic changes on an absolute (per-cell) basis, giving a more informative picture of the alterations underlying cancer. The work appears in the April 29 online issue of Nature Biotechnology.

“Most biology, including cancer, happens in cells,” said Scott Carter, a computational biologist in the Broad’s Cancer Program and first author of the new work. When tissue samples are prepared for analysis, cell membranes are broken and per-cell data is lost. “To associate what you’re actually measuring with the underlying biology, you need to go back to the unit of cells.”

In large-scale studies to look for DNA alterations in hundreds or thousands of cancer samples, it is impractical to directly and accurately measure the purity and ploidy of each sample.

So scientists have thus far used a relative measure of DNA changes that does not directly assess purity and ploidy.

The approach can reveal segments of the genome with more or less DNA than other segments, but it cannot discern changes on a per-cell basis, leaving much valuable information hidden.

“You start out measuring these relative changes in DNA mass, but to shed light on cancer, you really want to know the changes specific to the cancer cells,” said Carter.

ABSOLUTE infers purity and ploidy and enables measurements on a per-cell basis. The new method, which is currently being used in several large cancer genome projects, also sheds light on the evolution and population structure of cells within tumors.

"ABSOLUTE provides a new window into the genetic changes underlying cancer, on a cellular level," said Gad Getz, senior author of the new study and director of cancer genome computational analysis at the Broad. "This invaluable tool also gives an unprecedented look at the cellular makeup of tumors in large-scale studies."

Before applying the new method, scientists extract DNA from a tumor sample containing both normal and malignant cells.

Microarrays or DNA sequencing are used to measure the relative amounts of genetic material at each location along the genome, measures that will vary due to local “copy number” changes - extra or missing DNA known as duplications or deletions.

The sophisticated statistical analysis of ABSOLUTE is then applied to the relative data, giving a few likely options for per-cell values represented by the data points in the results.

For example, chromosome 10 in a cancer sample might appear in the relative data to be present at 70% the amount in a healthy cell, which could suggest a deletion.

But ABSOLUTE creates data models that assign more likely values to that segment - whole numbers such as zero, one, two, or three copies per cell.

ABSOLUTE also exposes alterations that cannot possibly be clonal, or in every tumor cell. As a tumor grows, cancer cells mutate further, sometimes spawning “subclones” with unique genetic alterations that are difficult to discern using existing methods.

ABSOLUTE can reveal the presence of these subclonal populations of cells harboring unique mutations. This knowledge can help scientists classify interesting mutations as clonal or subclonal, which can have important research and clinical implications: clonal mutations are important targets for designing therapeutics, and subclonal mutations could foster resistance to targeted treatments.

The team applied its new method to analyze copy number changes in microarray data from 3,155 samples across 25 cancer types, including samples of glioblastoma multiforme and ovarian carcinoma from The Cancer Genome Atlas (TCGA) project.

The analysis illustrated that whole-genome doubling, in which the entire genome of a tumor cell is doubled, is common among cancers. In some cancer types, more than half of all samples harbored doubled genomes.

The approach also allowed the team to examine the timing of copy number changes relative to genome doublings and showed that genome doubling can have effects on the trajectories of tumor evolution.

With sequenced genomes from 214 samples of ovarian cancer from the TCGA project, the scientists were then able to apply ABSOLUTE and to assign per-cancer-cell values not only to copy number alterations, but also to point mutations, or single-letter misspellings of DNA. This effort identified changes present only in subclones within the tumors.

Patterns in the point-mutation data also allowed the team to classify mutated genes as tumor suppressors or oncogenes. “This analysis gives us a window into the function of mutations,” said Carter. He explained that the method could be useful in helping identify new functional genes among data from other cancer studies.

By providing valuable information on purity and ploidy, ABSOLUTE allows researchers to select the purest samples to use in whole-genome sequencing studies and design the appropriate sequencing strategy to detect mutations in those samples. The method was used in recent studies by Broad researchers of prostate, head and neck, and colorectal cancers.

The team continues to improve the method and apply it to ongoing cancer genome efforts. The researchers are also working to collect samples from cancer patients before and after treatment to detect changes induced by cancer therapies and observe the evolution of subclones.

ABSOLUTE provides a revealing new look inside the genome of cancer cells, one that is already helping unveil the mysteries underlying this disease.

For Carter, bringing the data back to the “unit of cells” is crucial to making biological insights. “We hope this new tool will enable more enlightening studies of DNA’s role in cancer.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
Taking Immune Cells for a Test Drive
Combining biological experimentation on human white blood cells with advanced computational methods can help explain the functional impact of human genetic variation on immune disease.
Monday, March 17, 2014
ATARiS Informatics Platform Hits the Jackpot
ATARiS is one of several tools developed at the Broad Institute to precisely tune in to the signals within noisy datasets.
Wednesday, May 22, 2013
Researchers Announce GenomeSpace Environment to Connect Genomic Tools
GenomeSpace environment currently connects six tools.
Friday, June 15, 2012
Tool Detects Patterns Hidden in Vast Data Sets
Researchers from the Broad Institute and Harvard University have developed a tool that can tackle large data sets in a way that no other software program can.
Monday, December 19, 2011
Scientific News
Changing the Biological Data Visualisation World
Scientists at TGAC, alongside European partners, have created a cutting-edge, open source community for the life sciences.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
UEA Research Could Help Build Computers From DNA
New research from the University of East Anglia could one day help build computers from DNA.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Preserving Fleeting Digital Information with DNA
A team has demonstrated that DNA they encapsulated can preserve information for at least 2,000 years, and they’re now working on a filing system to make it easier to navigate.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!