Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Deployment of in silico and in vitro Safety Assays in Early-Stage Drug Discovery

Published: Friday, July 20, 2012
Last Updated: Friday, July 20, 2012
Bookmark and Share
This article discusses the use of in silico and cell-based assays in de-risking compounds in the early chemistry space.

One of the main reasons for the cost explosion in drug development is the increase in attrition, especially in highly expensive later-stage clinical trials. Between 1990 and 2004, attrition increased to 70% in Phase II and 50% in Phase III, and it is estimated that of all compounds that make it into the clinic, only 11% reach the market. Some of these later stage failures can be explained by a few factors: a shift in market potential; targets in a more complex biological context and lack of efficacy; and the need for new drugs with better efficacy or safety profile than the current standard of care. Toxicity, however, is the main reason for attrition, accounting for 30% of compound failure in clinical trials and 40–60% failure in preclinical work.

As such, the pharmaceutical industry is greatly interested in reducing costly late-stage attrition by shifting compound failure earlier in the R&D pipeline and, if possible, even before preclinical in vivo studies. In fact, the National Research Council in its 2007 report “Toxicity Testing in the 21st Century: A Vision and a Strategy” calls for transforming toxicology “from a system based on whole-animal testing to one founded primarily on in vitro methods that evaluate changes in biologic processes using cells, cell lines, or cellular components, preferably of human origin.” And indeed, using in vitro assays to assess compound-induced toxicity has a long history dating back more than half a century; for example, the use of cells to measure the toxicity of sulphonamide drugs was published in 1941.

The full article is published online in Future Medicinal Chemistry and is free to access.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
UEA Research Could Help Build Computers From DNA
New research from the University of East Anglia could one day help build computers from DNA.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Preserving Fleeting Digital Information with DNA
A team has demonstrated that DNA they encapsulated can preserve information for at least 2,000 years, and they’re now working on a filing system to make it easier to navigate.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!