Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Method Developed to Diagnose Hereditary Breast and Ovarian Cancer

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
Massive sequencing algorithm and bioinformatic analysis to detect very efficiently genetic mutations linked to the disease.

Researchers of the Catalan Institute of Oncology (ICO) at the Bellvitge Biomedical Research Institute (IDIBELL) have developed and validated a new method to diagnose hereditary breast and ovarian cancer syndrome based on mass sequencing of BRCA1 and BRCA2 genes. The model is based on a genetic analysis and bioinformatics which has been proved very effective. The new protocol has been described in an article published in the European Journal of Human Genetics.
In recent years, new advances in sequencing techniques have involved the development of new platforms for nucleic acid sequencing, called mass sequencing platforms or next sequencing generation. These technological improvements have brought a revolution in biomedical research, in the field of genetics and genomics. The emergence of next-generation sequencers and the possibility of combining samples from different patients, using identifiers have allowed adapt these new technologies in the field of genetic diagnostics.
Using a platform of the last generation mass sequencing, the team led by the researcher Conxi Lázaro, from the Hereditary Cancer Program at the ICO and IDIBELL, has developed a comprehensive protocol that allows sequenced all coding regions and adjacent regions of BRCA1 and BRCA2 genes, responsible for hereditary breast and ovarian cancer.
 Mass sequencing algorithm

"This approach has identified all point mutations and small deletions and insertions analyzed, even in regions of high technical difficulty, such as homopolymeric regions", explains the ICO-IDIBELL researcher. The developed protocol is an own algorithm of mass sequencing and bioinformatics analysis that has been shown to be very efficient in the detection of all existing mutations and to eliminate false positives.
The validation of this algorithm to diagnose hereditary breast and ovarian cancer syndrome has shown a sensitivity and specificity of 100% in the analyzed samples, while reducing costs and time for obtaining the results.
Furthermore, the research team led by Lázaro has implemented the use of this approach for the responsible genes for hereditary colorectal cancer, such as familial polyposis and Lynch syndrome.
Up to ten percent of cancers are hereditary, which means they are transmitted from parents to children the genetic mutations predisposing to various types of tumors. The identification of these mutations is very important to prevent the occurrence of tumors in people who have familial predisposition.
The hereditary breast and ovarian cancer syndrome is one of the hereditary cancer types that affects more people. The disease is caused by mutations in the BRCA1 and BRCA2 genes. These mutations are also associated with other kind of cancers.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

IDIBELL Participates in the Creation of a Bioinformatics Platform to Promote Education
One of its objectives is to turn the Barcelona area into an international reference in the field of bioinformatics, based on its scientific excellence and resources.
Monday, February 18, 2013
Scientific News
Breaking Through the Barriers to Lab Innovation
Here we examine the drivers behind the move for greater innovation, the challenges and current trends in laboratory informatics, and the tools that can be used to break these barriers.
Supercoiled DNA is Far More Dynamic Than the “Watson-Crick” Double Helix
Researchers have imaged in unprecedented detail the three-dimensional structure of supercoiled DNA, revealing that its shape is much more dynamic than the well-known double helix.
Four New Genetic Disorders Identified
Sharing of genetic data empowers discovery of new disorders in children.
UC San Diego Team Up with Illumina to Speed-Read Your Microbiome
Data analysis app accelerates studies aimed at using microbes to predict, diagnose and treat human diseases.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Influenza A Viruses More Likely To Emerge In East Asia Than North America
Novel strains of influenza A are more likely to emerge in East Asia than in North America, according to a global analysis by the One Health Institute at the UC Davis School of Veterinary Medicine and EcoHealth Alliance.
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
The Final Word on STAP
Researchers fail to replicate STAP study; computational analysis reveals genomic inconsistency.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos