Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Capturing Cancer Cells

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
When dealing with cancer, time is critical. Identifying cancer before it spreads can often be the difference between life and death, so early diagnosis is key.

Cancers begin in one part of the body and often spread through the bloodstream into other organs. This process is known as 'metastasis', and causes secondary tumours, 'metastases', to grow at other locations in the body. These cells which are released from the primary tumour into the bloodstream are called 'circulating tumour cells' (CTCs).

CTCs can be circulating through the bloodstream for years before any metastases form. If small numbers of CTCs can be detected in blood samples, cancers can be diagnosed before they spread. This is no easy task; blood samples might only contain a single CTC among millions of blood cells, and it can be difficult to distinguish between CTCs and normal cells.

'A common signature that a cell in the blood is cancerous is that the CTC has a protein called "EpCAM" on its surface,' says Dr Mark Howarth, a biochemist at the University of Oxford. Dr Howarth develops innovative biological and chemical techniques to image and diagnose cancer, and his group has recently been investigating the use of magnetic beads in cancer diagnosis.

'To catch CTCs, the most common way is to use magnetic attraction,' explains Dr Howarth. 'We use small magnetic beads coated with antibodies. Antibodies are proteins, normally produced by the immune system, which bind to specific targets. By using antibodies which bind only to EpCAM, we ensure that the beads only stick to CTCs. When a magnet is applied, the CTCs move to the magnet and the normal blood cells are washed away.

'We can then study the captured cells in the microscope to understand if the cell really is cancerous. By sequencing the cell’s DNA we can discover other features, such as whether the cancer might be vulnerable to particular drugs. For this reason, even if a person has already been diagnosed with cancer, studying their CTCs could be an important way to make sure that they get the best treatment.'

This technique has great diagnostic potential, as it only requires a standard blood sample from the patient. Yet current methods fail to catch CTCs whose surface contains low levels of markers such as EpCAM. Jayati Jain and Gianluca Veggiani in Dr Howarth's group investigated ways of ensuring that CTCs with fewer surface markers were still picked up by the magnetic beads. This was recently published in the journal Cancer Research.

'We showed that it makes a huge difference to use antibodies with the best binding affinity for their target,' says Dr Howarth. 'For imaging cancer cells, moderate binding affinity is okay, but for isolating cancer cells, there is a force from the magnet pulling the antibody off its target and so only the best antibodies survive.'

The 'binding affinity' between an antibody and its target determines how strongly they are held together. Antibodies with higher binding affinities provide stronger links between CTCs and magnetic beads, so fewer beads will be torn from CTCs when magnetic fields are applied. As a result, more CTCs end up in the final isolated sample.

Another problem with isolating CTCs is that the surface markers which the antibodies must bind to are not simply static.

'Surface markers like EpCAM in the membrane of the cell are moving in a "sea" of lipids and cholesterol,' explains Dr Howarth. 'Cholesterol plays an important role in the physical properties of the cell membrane, affecting its fluidity, elasticity and integrity. We found that the cell’s cholesterol level was crucial to how sensitively the cell could be isolated by the magnetic beads.

'Feeding cells extra cholesterol for an hour meant that even cells with low EpCAM levels were caught. It's worth bearing in mind that all of this is done to blood samples after they have been taken from the patient – we're not talking about pumping people full of cholesterol!'

If enhanced CTC isolation techniques could be rolled out nationwide, cancers could potentially be identified years earlier than they are currently. A recent survey found that around a quarter of cancers in the UK are only diagnosed when the symptoms are so severe that patients are admitted to A&E.

'Using the information we gained about cell isolation, we could capture cancer cells expressing lower levels of distinguishing marker than before,' according to Dr Howarth. 'As the next step we are going on to explore, through collaboration with the Oxford Cancer Research Centre, how our enhanced technique will affect the ability to find CTCs in breast cancer patients and understand the changes happening during the course of the disease. In the long term, we hope that this approach will help searching for CTCs to become a standard tool in looking for early signs of cancer in the most susceptible populations.

'It's worth emphasizing that our modification of this technology has a long way to go before we see it in clinical diagnosis. Clinics in the US already use magnetic isolation techniques, but only to detect cancer recurrence rather than for the initial diagnosis. We need to test our enhanced techniques on the blood samples of real cancer patients to assess their clinical value.

'We must also improve our understanding of CTCs, so that clinicians can reliably identify them under a microscope. With typical current approaches, a few percent of samples give a 'false positive', because some normal cells look like CTCs. In several years, if we could address these issues, CTC isolation could be a powerful and cost-effective tool for primary diagnosis of cancer.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Identifying Drug Resistance Traits
Scientists have developed an easy-to-use computer program that can quickly analyse bacterial DNA from a patient's infection and predict which antibiotics will work, and which will fail due to drug resistance.
Tuesday, December 22, 2015
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Tuesday, November 24, 2015
Oxford, Harvard Scientists Lead Data-Sharing Effort
New standards allow disparate data sets to integrate, allowing behind-the-scenes combination of the mountains of data produced by modern, technology driven science.
Tuesday, January 31, 2012
Scientific News
Making Metabolite Identification More Efficient
Metasense combines the industry's most-comprehensive metabolic transformation prediction with efficient analysis of LC/MS analytical measurements to identify, visualize, and report chemical biotransformations.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Applying Deep Learning to Drug Discovery
Researchers train deep neural networks to predict the therapeutic use of large number of multiple drugs using gene expression data obtained from high-throughput experiments on human cell lines.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Gene Expression Controls Revealed
Researchers have modelled every atom in a key part of the process for switching on genes, revealing a whole new area for potential drug targets.
Making Genetic Data Easier to Search
Scripps team streamlines biomedical research by making genetic data easier to search.
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
Making Precision Medicine a Reality
Researchers are one step closer to understanding the genetic and biological basis of diseases like cancer, diabetes, Alzheimer’s and rheumatoid arthritis – and identifying new drug targets and therapies.
New Database for Sharing MS Clinical Trial Data
A new database containing nearly 2500 patient records from the placebo arms of nine multiple sclerosis (MS) clinical trials is now available for research by qualified investigators.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!