Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Unanticipated Consequences of DNA Hypomethylation; Loss and Gain of Polycomb Mediated Transcription Repression in Somatic Cells

Published: Monday, April 01, 2013
Last Updated: Monday, April 01, 2013
Bookmark and Share
By genome-wide mapping of the Polycomb Repressive Complex 2 (PRC2)-signature histone mark, H3K27me3, in DNA methylation-deficient mouse somatic cells, the Meehan lab shows that loss of DNA methylation is coincident with widespread H3K27me3 redistribution.

Unanticipated consequences of DNA hypomethylation; loss and gain of Polycomb mediated transcription repression in somatic cells.

Tag:
Text book DNA biology describes a genetic code comprising of four DNA bases (A,C,T,G ) and a 5th chemically modified (methylated) base 5-methylcytosine (5mC). The presence of the 5mC base at cytosine rich gene promoters (CpG islands) is highly correlated with transcriptional silencing. Non-methylated CpG island genes are usually highly expressed in cells, but a fraction of these genes can be regulated by a separate regulatory system that does not involve 5mC, termed Polycomb. In this case instead of adding a modification to DNA, it can add methyl groups to a protein closely associated with DNA that also results in gene silencing. Specifically lysine 27 (K27) on histone H3 becomes tri-methylated resulting in H3K27me3 at silenced CpG islands. Polycomb and DNA methylation have always been thought to work independently at CpG islands. However a genome wide study by Reddington, Meehan and co-authors suggests that these mechanisms are more closely linked than previously appreciated. Meehan and co-authors examined the 5mC and histone H3K27me3 profile in cells that have reduced levels of DNA methylation. Essentially they observed many normally non-5mC marked CpG island genes loose Polycomb marks in hypomethylated cells; leading to gene activation without changes in DNA methylation. This accounts for around a third of the increased expression observed in hypomethylated cells, suggesting that participating in Polycomb mediated repression is also a major function for DNA methylation in gene regulation. They hypothesise that loss of methylation throughout the genome creates new, more attractive, ‘landing sites’ for Polycomb. They show that in the hypomethylated cells the Polycomb repression machinery migrates to these new landing sites and can cause de novo silencing of adjacent genes. Frequent observations in cancers are DNA hypomethylation of large genomic domains and hypermethylation of CpG islands. It will be intriguing to investigate the effect of DNA methylation redistribution on Polycomb targeting in cancer cells, and its downstream effect on gene expression. Indeed, new domains of H3K27me3 have been observed in breast cancer cell lines in regions that become DNA hypomethylated.

Summary:
 A systems level understanding of chromatin structure requires a detailed comprehension of the functional relationships between epigenetic mechanisms, in addition to the roles of the individual mechanisms themselves. The Meehan lab undertook a systematic genomics approach to investigate the emerging functional relationships between DNA methylation and the Polycomb repressor system; two essential epigenetic mechanisms involved in the gene silencing. By genome-wide mapping of the Polycomb Repressive Complex 2 (PRC2)-signature histone mark, H3K27me3, in DNA methylation-deficient mouse somatic cells, James Reddington and colleagues show that loss of DNA methylation leads to widespread H3K27me3 redistribution, consistent with the DNA methylome being an important factor in the targeting of the PRC2 complex throughout the genome. Unexpectedly, in addition to increased H3K27me3 at previously highly DNA methylated genomic regions, they observe a striking loss of H3K27me3 and PRC2 from its normal target gene promoters, including Hox gene clusters. Importantly, we show that many of these genes become ectopically expressed in DNA methylation-deficient cells, consistent with loss of Polycomb-mediated gene repression. They propose that an intact DNA methylome is required for appropriate Polycomb-mediated gene repression by constraining PRC2 targeting. These observations identify a novel functional relationship between DNA methylation and the Polycomb system in gene regulation and will influence our understanding of how these epigenetic mechanisms contribute to normal development and disease.

Funding:
This study was funded by the Medical Research Council (UK) at the MRC Human Genetics Unit at the IGMM in at Edinburgh University.

 -------------------------------------------------------------------------------------------------------------------------- 

Author list
James P. Reddington, Sara M. Perricone, Colm E. Nestor, Judith Reichmann, Neil A. Youngson, Masako Suzuki, Diana Reinhardt, Donncha S. Dunican, James G. Prendergast, Heidi Mjoseng, Bernard H. Ramsahoye, Emma Whitelaw, John M. Greally, Ian R. Adams, Wendy A. Bickmore and Richard R Meehan* Title : Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of polycomb-target genes.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tissue of Origin Determines Cancer-associated CpG Island Promoter Hypermethylation Patterns
Meehan, Sproul and co-workers conclude that general aberrant promoter hypermethylation in cancer does not promote tumorigenesis, but instead reinforces transcription repression inherited from pre-cancerous tissue.
Friday, October 05, 2012
Non-Genotoxic Carcinogen Exposure Induces Defined Changes in the 5-Hydroxymethylome
In a genome wide study Meehan, Moggs and MARCAR co-authors examined 5mC and 5hmC profiles of liver in control and phenobarbital treated mice. They observe dynamic and reciprocal changes in the 5mC/5hmC patterns over genes promoters that are transcriptionally up-regulated.
Friday, October 05, 2012
Scientific News
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
An Innovative Algorithm to Decipher How Drugs Work Inside the Body
Researchers at Columbia University Medical Center (CUMC) have developed a computer algorithm that is helping scientists see how drugs produce pharmacological effects inside the body.
How do Networks Shape the Spread of Disease and Gossip?
A team of mathematicians from Oxford University, University of North Carolina at Chapel Hill, and Rutgers University used a set of mathematical rules to encode how a contagion spreads, and then studied the outcomes of these rules.
AncestryDNA and Calico to Research the Genetics of Human Lifespan
Collaboration will analyze family history and genetics to facilitate development of cutting-edge therapeutics.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!