Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Computational Tool Translates Complex Data into 2-Dimensional Images

Published: Tuesday, May 21, 2013
Last Updated: Tuesday, May 21, 2013
Bookmark and Share
May allow doctors to track progression of cancer, response to treatment, and risk of relapse.

In their quest to learn more about the variability of cells between and within tissues, biomedical scientists have devised tools capable of simultaneously measuring dozens of characteristics of individual cells. These technologies have led to new challenges, however, as scientists now struggle with how to make sense of the resulting trove of data. Now a solution may be at hand. Researchers at Columbia University and Stanford University have developed a computational method that enables scientists to visualize and interpret “high-dimensional” data produced by single-cell measurement technologies such as mass cytometry. The method, published today in the online edition of Nature Biotechnology, has particular relevance to cancer research and therapeutics.

Researchers now understand that cancer within an individual can harbor subpopulations of cells with different molecular characteristics. Groups of cells may behave differently from one another, including in how they respond to treatment. The ability to study single cells, as well as to identify and characterize subpopulations of cancerous cells within an individual, could lead to more precise methods of diagnosis and treatment.

“Our method not only will allow scientists to explore the heterogeneity of cancer cells and to characterize drug-resistant cancer cells, but also will allow physicians to track tumor progression, identify drug-resistant cancer cells, and detect minute quantities of cancer cells that increase the risk of relapse,” said co-senior author Dana Pe’er, PhD, associate professor of biological sciences and systems biology at Columbia. The other co-senior author is Garry P. Nolan, PhD, professor of microbiology & immunology at Stanford.

The method, called viSNE (visual interactive Stochastic Neighbor Embedding), is based on a sophisticated algorithm that translates high-dimensional data (e.g., a dataset that includes many different simultaneous measurements from single cells) into visual representations similar to two-dimensional “scatter plots”—the simple graphs with X and Y axes that many people first encounter in high school math and biology. “Basically, viSNE provides a way to visualize very high-dimensional data in two dimensions, while maintaining the most important organization and structure of the data,” said Dr. Pe’er. “Color is used as a third dimension to enable users to interactively visualize various features of the cells.”

The viSNE software can analyze measurements of dozens of molecular markers. In the two-dimensional maps that result, the distance between points represents the degree of similarity between single cells. The maps can reveal clearly defined groups of cells with distinct behaviors (e.g., drug resistance) even if they are only a tiny fraction of the total population. This should enable the design of ways to physically isolate and study these cell subpopulations in the laboratory.

Although the algorithm underlying the method is complex, Dr. Pe’er expects that all researchers, no matter their level of mathematical expertise, will be able to use viSNE.

To demonstrate the software’s utility, Dr. Pe’er and her colleagues used mass cytometry and viSNE to study bone marrow cells from patients with acute myeloid leukemia. Currently, clinicians can incorporate at most 4 to 8 markers to assess the cells. Because mass cytometry and viSNE can incorporate many more markers, viSNE is able to identify more subtle differences between cells. Using the algorithm, Dr. Pe’er and her colleagues were able to reveal previously unrecognized heterogeneity in the bone marrow cells they studied.

The researchers also showed that viSNE could detect minimal residual disease (MRD) — extremely small quantities of cancer cells that persist after chemotherapy and raise the risk of recurrence. “In blinded tests, we were able to find as few as 20 cancer cells out of tens of thousands of healthy cells,” said Dr. Pe’er. Such a small quantity of cells is extremely difficult to detect, even by the most experienced pathologist.

“The ability to detect MRD is critical for curing cancer,” added Dr. Pe’er. “Eliminating even 99.9 percent of a tumor doesn’t bring about a cure. You have to be able to find, and then eliminate, the tiny populations of cells that can survive therapy and lead to disease relapse.”

The paper is titled, “viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.” The other authors are: El-ad David Amir (Columbia), Kara L. Davis (Stanford University), Michelle D. Tadmor (Columbia), Erin F. Simonds (Stanford), Jacob H. Levine (Columbia), Sean C. Bendall (Stanford), Daniel K. Shenfeld (Columbia), and Smita Krishnaswamy (Columbia).

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

An Innovative Algorithm to Decipher How Drugs Work Inside the Body
Researchers at Columbia University Medical Center (CUMC) have developed a computer algorithm that is helping scientists see how drugs produce pharmacological effects inside the body.
Friday, July 24, 2015
Scientific News
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
On Top of the Flu
Chance for advance warning in search-based tracking method.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.
Is Allergy the Price We Pay for Our Immunity to Parasites?
New findings help demonstrate the evolutionary basis for allergy.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos