Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

ATARiS Informatics Platform Hits the Jackpot

Published: Wednesday, May 22, 2013
Last Updated: Wednesday, May 22, 2013
Bookmark and Share
ATARiS is one of several tools developed at the Broad Institute to precisely tune in to the signals within noisy datasets.

Listening to data isn’t easy. Massive amounts of data are often messy and complicated. But somewhere within the cacophony, information can harmonize and produce the sweet sound of discovery – if you have the right tools with which to hear it.

ATARiS is one of several tools developed at the Broad Institute to precisely tune in to the signals within datasets. The original idea for ATARiS came about a few years ago when members of Jill Mesirov’s computational biology and bioinformatics group, Bill Hahn's cancer biology group, and the Broad RNAi Platform were trying to address a common problem from the world of RNAi research. RNAi – short for RNA interference – allows researchers to “turn off” a gene or decrease that gene’s activity. Ideally, every gene in the genome would be paired with an RNAi reagent that could turn it – and only it – off. Instead, most RNAi reagents also disrupt other genes (a frustrating phenomenon known as off-target effects). Without a way to easily isolate on-target effects, the power of RNAi wanes.

RNAi is a critical tool for many projects at the Broad and beyond, including Project Achilles. This project – a joint effort between researchers at the Dana-Farber Cancer Institute and the Broad – seeks to pinpoint cancer’s most important weaknesses. To do so, researchers use RNAi to turn off genes in hundreds of cell lines. About 50,000 RNAi reagents have been used to target 11,000 of the 21,000 human genes (about five RNAi reagents for each of these genes) in order to see which genes are critical for cancer’s survival. These crucial genes could become the targets of drugs in the future.

“What we want to do is tune in on a specific target effect,” says Diane Shao, a graduate student in senior associate member Bill Hahn’s lab at the Broad Institute and Dana-Farber Cancer Institute. However, while researchers can pick out an RNAi reagent that seems particularly adept at killing cancer cells, they can’t be entirely certain which of its effects – on-target or off-target – are bringing about the desired result.

ATARiS helps cut through the noise from the multitude of variables and values. The computational method looks for patterns across multiple samples, assessing the performance of individual RNAi reagents to target specific genes. This allows researchers to determine which gene – rather than which RNAi reagent – is most of interest.

“ATARiS makes RNAi data more accessible,” says Aviad Tsherniak, a computational biologist in Jill Mesirov’s lab at the Broad and the key architect of ATARiS. “It simplifies it and standardizes it, and it makes the data compatible with other kinds methods.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
Taking Immune Cells for a Test Drive
Combining biological experimentation on human white blood cells with advanced computational methods can help explain the functional impact of human genetic variation on immune disease.
Monday, March 17, 2014
Researchers Announce GenomeSpace Environment to Connect Genomic Tools
GenomeSpace environment currently connects six tools.
Friday, June 15, 2012
An ABSOLUTEly New View of the Cancer Genome
New method called ABSOLUTE sheds light on the evolution and population structure of cells within tumors.
Friday, June 15, 2012
Tool Detects Patterns Hidden in Vast Data Sets
Researchers from the Broad Institute and Harvard University have developed a tool that can tackle large data sets in a way that no other software program can.
Monday, December 19, 2011
Scientific News
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
UEA Research Could Help Build Computers From DNA
New research from the University of East Anglia could one day help build computers from DNA.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Preserving Fleeting Digital Information with DNA
A team has demonstrated that DNA they encapsulated can preserve information for at least 2,000 years, and they’re now working on a filing system to make it easier to navigate.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!