Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

PathoGenetix and Applied Maths Sign Agreement

Published: Thursday, June 27, 2013
Last Updated: Thursday, June 27, 2013
Bookmark and Share
Both Companies to integrate RESOLUTION™ Microbial Genotyping System with BioNumerics™ software suite.

PathoGenetix, Inc. and Applied Maths, NV have signed an agreement to link the RESOLUTION Microbial Genotyping System with the BioNumerics software suite to offer a dramatically improved time-to-answer and shortened decision making time in pathogen outbreak investigations, traceback and epidemiological response.

The fully automated and integrated solution will confirm and identify pathogens in complex mixtures in just five hours, allow rapid sharing of outbreak information among public health and food safety laboratories, and enable comparison to strain data from other typing systems such as pulsed field gel electrophoresis (PFGE).

PathoGenetix, Inc., developer of an automated system for rapid bacterial identification, and Applied Maths, NV, a leader in bioinformatics and analytical solutions for public health and research laboratories, have signed a collaborative agreement to integrate the RESOLUTION™ Microbial Genotyping System with the BioNumerics™ software suite.

The end-to-end automated solution will integrate rapid pathogen strain typing with advanced data management and networking tools, and enable sharing and comparison of outbreak strain data among public health or food safety testing labs.

The collaboration also will enable serotype and strain type information generated by the RESOLUTION System to be compared to data sets generated by other identification methods such as pulsed field gel electrophoresis (PFGE) or whole genome sequencing (WGS).

PathoGenetix’s RESOLUTION System is based on Genome Sequence Scanning™ (GSS™) technology initially developed to detect bio-threat pathogens in environmental samples.

This breakthrough genotyping technology isolates and analyzes microbial DNA directly from complex mixtures, without the need for a pure culture.

Rapid throughput scanning and proprietary software generate genomic barcodes based on the underlying sequence, and compare them to an onboard database to provide molecular serotype and strain type information for all target bacteria present in the sample at detectable levels.

The typing resolution is comparable to PFGE, the current standard for pathogen identification in foodborne illness outbreak investigations.

The RESOLUTION System’s ability to work from a mixed sample could enable it to provide critical strain information in a culture independent diagnostics environment.

“The RESOLUTION System with BioNumerics software will offer public health and food testing labs the ability to seamlessly integrate, curate and compare new outbreak strain information with their existing PFGE and whole genome sequence data sets,” said PathoGenetix president Ann Merrifield.

“With time-to-results reduced to just five hours, and a seamless connection to existing strain databases and laboratory tools, we can shorten outbreak investigation and response, and improve public health,” Merrifield said.

Applied Maths’ BioNumerics is a turnkey software suite for integrative biological data management and comparative analysis that includes data mining, clustering, identification and statistical applications.

BioNumerics software is currently in use in thousands of public and private research sites and laboratories worldwide, and is the cornerstone for numerous national and international research projects and epidemiological surveillance networks.

“We’re excited to work with PathoGenetix to link its breakthrough microbial identification technology with the BioNumerics software suite,” said Koen Janssens, chief executive officer of Applied Maths. “By working directly from a complex sample rather than a cultured isolate, and by automating pathogen identification from sample preparation to data analysis, our integrated solution will simplify laboratory workflows and dramatically reduce the time required to identify pathogenic organisms in epidemiological investigations.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
UEA Research Could Help Build Computers From DNA
New research from the University of East Anglia could one day help build computers from DNA.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Preserving Fleeting Digital Information with DNA
A team has demonstrated that DNA they encapsulated can preserve information for at least 2,000 years, and they’re now working on a filing system to make it easier to navigate.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!