" "
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genomic and Computational Tools Provide Window to Distant Past

Published: Friday, August 09, 2013
Last Updated: Friday, August 09, 2013
Bookmark and Share
Researcher studies gene differences in humans and other species to better understand timeline of genetic changes.

Out of the estimated 23,000 or more genes in the human genome, about 100 of them will differ--they will be present or not--between any two individuals. Genes lost or gained over time result from evolution and adaptation, as species respond through the years to their environment and other influences.

The availability of genomic sequences now allows scientists to study the presence or absence of whole genes among individuals and between species, and the impact of such changes for evolution.

Some individuals, for example, have a sharper sense of smell than others because they have more copies of olfactory receptor genes, which allow them to detect a wider range of odors. Others, especially those who live in societies with starchy diets, have more copies of the gene responsible for producing amylase, an enzyme in saliva that breaks down starch.

"There have been lots of changes, and we want to know which ones might have been involved in human adaptation," says Matthew Hahn, an associate professor of biology and informatics at Indiana University at Bloomington. "The comparison of whole genomes has revealed large and frequent changes in the size of gene families. Comparative genomic analyses allow us to identify large-scale patterns of change in gene families, and to make inferences regarding the role of natural selection in gene gain and loss."

Using computer models and available genomic data, Hahn studies the differences in genes among humans and other species, and compares them, in order to better understand the timeline of genetic changes and adaptation throughout our history. By developing computational and statistical tools to analyze whole genomes, Hahn and his team are learning new things about the evolution of gene regulation and gene families, human genomic history, and the evolution of phenotypically important genes.

"We can't go back in time, but we can use current species to get a pretty good estimate of what the ancestors looked like, and to get some ideas of what changes occurred and the order of these changes," he says.

The scientists are examining all the genes in the genome, and focusing on differences among species, such as chimpanzees and other primates compared to humans. "There's a 6 percent difference between humans and chimps in the genes they have," he says. "In the end, after 6 million years of being separate, we don't have exactly the same set of genes as chimps. How and when did those differences occur?"

Hahn is conducting his research under a National Science Foundation (NSF) Faculty Early Career Development (CAREER) award, which he received in 2009 as part of NSF's American Recovery and Reinvestment Act funding. The award supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education, and research within the context of the mission of their organization. He is receiving about $1 million over five years.

The work could have wide-ranging applications in diagnosing and treating diseases, since many illnesses and conditions arise from genetic mutations, including the duplication or loss of important genes.

"There is a lot of interest in trying to associate these changes to human diseases," Hahn says. "There are diseases that are caused when you lose or even gain a gene, not just affecting smell or the ability to digest starch. A lot of the genes that differ in copy number are genes involved in our immune response, and these are obvious candidates for the genetic changes underlying differences in disease susceptibility among individuals. By understanding normal variation in gene copy-number, we hope to be able to better recognize changes that may be detrimental to human health."

The researchers often start by examining the differences in the number of copies of different genes among individual humans.

"The 1,000 Genomes Project (an international research effort, launched in 2008, to establish the most detailed catalogue of human genetic variation) has allowed us to study the full genetic complement of genes in a wide variety of human populations, from all of the inhabited continents," he says. "We find differences between individuals within populations and among populations, largely recapitulating the known relationships among humans.

"But we also find population-specific changes in genes that have allowed us to adapt to our surroundings," he adds. "These changes have involved both the adaptive gain and adaptive loss of genes, and are associated with important phenotypic differences among individuals."

To understand the differences shared among all humans, and that distinguish us from our ancestors, the researchers then compare the full complement of genes to those of other primates, including chimpanzees, orangutans, macaques and marmosets.

"These comparisons, and similar ones to other new genomes that are being sequenced all the time, allow us to make strong inferences about what our common ancestral genome looked like, and, therefore, the changes that have occurred along the human lineage," he says.

Such genetic changes are highly likely to have been involved in human-specific adaptations, for example, humans' increased cranium size, according to Hahn.

"Having these genomic and computational tools gives us a window into the distant past that we otherwise would not have had," he says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Neanderthal DNA Influences Human Disease Risk
Large-scale, evolutionary analysis compares genetic data alongside electronic health records.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
‘Lifespan Machine’ Probes Cause of Aging
Findings suggest that aging has no single mechanism.
Machine Learning Uncovers Unknown Bacterial Features
Technique robustly identified characteristic gene expression patterns in response to antibiotics, low oxygen conditions.
Nucleic Acid Computing Inside Cells
Using strands of nucleic acid, scientists have demonstrated basic computing operations inside a living mammalian cell.
Risk Map for Nematode Parasite in Uganda
Infection with the nematode parasite Mansonella perstans is one of the most neglected of the neglected tropical diseases.
DNA Analysis in the Fast Lane
Rice bioengineers' method should lead to better database of thermal behaviors.
Mapping out Cell Conversion
Researchers develop algorithm that takes the field of cell reprogramming forward.
Parallel Single-Cell Profiling
New single-cell genomics protocol allows researchers to study links between DNA modifications (methylation) and the activity of a gene.
ASCB: A CELLebration of Cell Biology
The last major congress of the year, ASCB is less a platform for launching new products, but one for confirming and consolidating the trends that have emerged over the past 12 months.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!