Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Marker for Breast Cancer

Published: Tuesday, August 13, 2013
Last Updated: Tuesday, August 13, 2013
Bookmark and Share
Research says it soon may be possible to gauge individual risk for disease, and eventually to treat it.

An international scientific collaborative led by the Harvard Stem Cell Institute’s Kornelia Polyak has discovered why women who give birth in their early 20s are less likely to develop breast cancer eventually than women who don’t, triggering a search for a way to confer this protective state on all women.

The researchers are now testing p27, a mammary gland progenitor marker, on tissue samples collected from thousands of women over decades — women whose medical histories have been followed extremely closely — to see if it is an accurate breast cancer predictor in a large population. If the hypothesis is confirmed, which appears likely within a few months, Polyak says the commercial development of a clinical test for breast cancer risk would follow.

In a paper just published in the journal Cell Stem Cell, the researchers describe how a full-term pregnancy when a woman is in her early 20s reduces the relative number and proliferative capacity of mammary gland progenitors — cells that have the ability to divide into milk-producing cells — making them less likely to acquire mutations that lead to cancer.

By comparing numerous breast tissue samples, the scientists found that women at high risk for breast cancer, such as those who inherit a mutated BRCA1 or BRCA2 gene, have higher-than-average numbers of mammary gland progenitors. In general, women who carried a child to full term had the lowest populations of mammary gland progenitors, even when compared with cancer-free women who had never been pregnant. In addition, in women who gave birth relatively early but later developed breast cancer, the number of mammary gland progenitors was again observed to be higher than average.

“The reason we are excited about this research is that we can use a progenitor cell census to determine who’s at particularly high risk for breast cancer,” said Polyak, a Harvard Stem Cell Institute principal faculty member and a Harvard Medical School professor at the Dana-Farber Cancer Institute. “We could use this strategy to decrease cancer risk because we know what regulates the proliferation of these cells, and we could deplete them from the breast.”

Research shows that two trends are contributing to an increase in the number of breast cancer diagnoses, a rise in obesity and the ever-increasing number of women postponing childbearing. The scientists’ long-range goal is to develop a treatment that would mimic the protective effects of early childbearing.

The research, which took five years to complete, began with conversations between Polyak and Saraswati Sukumar, a professor at Johns Hopkins University School of Medicine. The two scientists formed collaborations with clinicians at cancer centers that see large numbers of high-risk women, in order to obtain breast tissue samples. They also worked with genomics experts and bioinformaticians to analyze gene expression in different breast cell types. At times, Polyak and Sukumar had trouble gaining cooperation for the study, which is unique in the breast cancer field for its focus on risk prediction and prevention.

“In general, people who study cancer always want to focus on treating the cancer. But, in reality, preventing cancer can have the biggest impact on cancer-associated morbidity and mortality,” Polyak said. “I think the mentality has to change because breast cancer affects so many women, and even though many of them are not dying of breast cancer, there’s a significant personal and societal burden.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Computational Science as a Force for Change
Students in new master's program aim to improve security, finance, medicine, and more.
Tuesday, November 26, 2013
Scientific News
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
UEA Research Could Help Build Computers From DNA
New research from the University of East Anglia could one day help build computers from DNA.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Preserving Fleeting Digital Information with DNA
A team has demonstrated that DNA they encapsulated can preserve information for at least 2,000 years, and they’re now working on a filing system to make it easier to navigate.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!