Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Cloud Computing System that can Reduce Carbon Emissions

Published: Wednesday, January 15, 2014
Last Updated: Wednesday, January 15, 2014
Bookmark and Share
The ‘Stratus’ system shares server load to meet green and cost-related goals of companies.

Computer scientists at Trinity College Dublin and IBM Dublin have made a significant advance that will allow companies to reduce associated greenhouse gas emissions, drive down costs, and minimise network delays depending on their wishes.

The scientists have dubbed their new system ‘Stratus’. Using mathematical algorithms, Stratus effectively balances the load between different computer servers located across the globe. All of the services on the Internet today are based in the ‘Cloud’, which means Twitter, Facebook or Google mail requests are dealt with by one of thousands of PC servers located at a small number of warehouse-sized cloud-computing facilities around the world.

The cloud-computing facilities consume megawatts of power and generate a level of greenhouse gas emissions that varies depending on factors such as local time, the utility’s fuel mix for electricity generation, and the use of sophisticated power-saving techniques.  For example, a facility fed by a coal-fired generator in the middle of a hot summer day consumes power that is both expensive to buy, and which generates a very high carbon output.  In contrast, a facility operating next to a large wind farm in the middle of the night will be cheaper and more carbon efficient.

Companies that host their services in the cloud need to buy sufficient capacity to meet demand, but they can choose where in the world they want their servers to be located and can even change this on an hourly basis. Stratus allows a company to set out how much importance they attach to cost, greenhouse gas emissions and network delays involved in servicing their internet load.  The algorithms then work out how best to split the load across different cloud-computing facilities to achieve the ‘best’ result.

The research has just appeared in the inaugural issue of IEEE: Transactions on Cloud Computing, which is a new journal in the prestigious IEEE Transactions series. Professor in Computer Science at Trinity, Donal O’Mahony, said: “The overall goal of the Stratus system is to allow companies to procure their cloud computing service in a way that best serves their priorities. If they want to be super-green, it will shift the load one way. If they want to cut costs to the bone, it will shift it another way, or they can choose anything in between.”

To test Stratus, the scientists created a simulation based on three large facilities located at California, Virginia and Dublin.  These locations were chosen because they mirrored where Amazon Web Services – a leading cloud provider – has three of their major service centres.   Some data centres used state-of-the-art cooling techniques and some did not.  Real-time local wholesale prices for electricity were used where available.  The team also conducted a study on network delays between various parts of the internet and the three facilities.

In their simulations, the scientists found that by tailoring the algorithms to reduce carbon output, they could achieve a 21% reduction in the greenhouse gas emissions associated with the given load.  Likewise, by targeting electricity cost reductions, they could achieve a 61% saving over simply splitting the load evenly.  By assigning weights to each factor, the load could be spread to fully reflect individual preferences.

Computer scientist Joseph Doyle, who designed the simulation, added: “We know there are imperfections in the data we have for each of these three regions, but what is important is that our algorithms will respond in real-time to deliver on the companies’ objectives.”
Robert Shorten, Optimisation Researcher at IBM Research, who co-supervised the work, said: “This is a nice example of how mathematical optimisation, control theory and computer science can come together to deliver significant environmental benefits.”



Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Genetic Mutation Helps Explain Development of Eczema
Researchers found that a mutation in the gene Matt/Tmem79 led to the development of spontaneous dermatitis in mice.
Monday, November 04, 2013
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
An Innovative Algorithm to Decipher How Drugs Work Inside the Body
Researchers at Columbia University Medical Center (CUMC) have developed a computer algorithm that is helping scientists see how drugs produce pharmacological effects inside the body.
How do Networks Shape the Spread of Disease and Gossip?
A team of mathematicians from Oxford University, University of North Carolina at Chapel Hill, and Rutgers University used a set of mathematical rules to encode how a contagion spreads, and then studied the outcomes of these rules.
AncestryDNA and Calico to Research the Genetics of Human Lifespan
Collaboration will analyze family history and genetics to facilitate development of cutting-edge therapeutics.
Informatics Tool Helps Scientists Prioritize Protein Modification Research
Researchers have developed a new informatics technology that analyzes existing data repositories of protein modifications and 3D protein structures to help scientists identify and target research on "hotspots" most likely to be important for biological function.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!