Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

GW Receives up to $14.6M to Develop Method for Characterizing Security Threats

Published: Wednesday, January 29, 2014
Last Updated: Monday, February 03, 2014
Bookmark and Share
The researchers are tasked with reducing to 30 days a process that can sometimes take years or even decades.

A team led by a George Washington University (GW) researcher will receive up to $14.6 million over five years from the Defense Advanced Research Projects Agency (DARPA) to develop an approach to rapidly identify the root of biological and chemical threats. If successful, the approach could bolster national security efforts to combat these threats.

“Clearly, this is a very large challenge, and it’s easy to understand why it’s important to overcome,” said Akos Vertes, George Washington University professor of chemistry in the Columbian College of Arts and Sciences. “Discovering the cause behind a biological or chemical threat can provide information that not only counteracts the threat but also provides important information for pharmaceutical companies developing drugs that may be unrelated to the threat.”

Biological threats, such as anthrax, derive from bacteria, while others derive from viruses, toxins or fungi.  Chemical threats include substances that work to interfere with the nervous system or even cause asphyxiation. These threats have the potential to cause widespread, rapid injury or death.

To determine how a biological or chemical threat disrupts life functions, researchers must take a holistic view of the threat and the system in which it is working. The team will examine the effects of toxic agents on genes, proteins and cellular functions using the scientific disciplines of transcriptomics, proteomics, metabolomics and bioinformatics to meet the 30-day challenge. By combining an immense amount of data gleaned from these disciplines, researchers believe it will be easier to determine the workings of a given biological or chemical threat in a given environment.

One problem in achieving this, though, is the fact that the field of metabolomics isn’t as well-developed as other scientific disciplines. However, Dr. Vertes and his team at GW recently developed the Laser Ablation Electrospray Ionization (LAESI) technique, which allows researchers to more quickly and effectively learn the chemical composition of a biological sample. The technique was licensed to Protea Biosciences Inc., which developed the commercial product— the LAESI-DP 1000 Direct Ionization System—last year.

GE Global Research, Protea Biosciences Inc., and SRI International will collaborate with GW on this project, titled, “New Tools for Comparative Systems Biology of Threat Agent Action Mechanisms.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
UEA Research Could Help Build Computers From DNA
New research from the University of East Anglia could one day help build computers from DNA.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Preserving Fleeting Digital Information with DNA
A team has demonstrated that DNA they encapsulated can preserve information for at least 2,000 years, and they’re now working on a filing system to make it easier to navigate.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!