Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

GW Receives up to $14.6M to Develop Method for Characterizing Security Threats

Published: Wednesday, January 29, 2014
Last Updated: Monday, February 03, 2014
Bookmark and Share
The researchers are tasked with reducing to 30 days a process that can sometimes take years or even decades.

A team led by a George Washington University (GW) researcher will receive up to $14.6 million over five years from the Defense Advanced Research Projects Agency (DARPA) to develop an approach to rapidly identify the root of biological and chemical threats. If successful, the approach could bolster national security efforts to combat these threats.

“Clearly, this is a very large challenge, and it’s easy to understand why it’s important to overcome,” said Akos Vertes, George Washington University professor of chemistry in the Columbian College of Arts and Sciences. “Discovering the cause behind a biological or chemical threat can provide information that not only counteracts the threat but also provides important information for pharmaceutical companies developing drugs that may be unrelated to the threat.”

Biological threats, such as anthrax, derive from bacteria, while others derive from viruses, toxins or fungi.  Chemical threats include substances that work to interfere with the nervous system or even cause asphyxiation. These threats have the potential to cause widespread, rapid injury or death.

To determine how a biological or chemical threat disrupts life functions, researchers must take a holistic view of the threat and the system in which it is working. The team will examine the effects of toxic agents on genes, proteins and cellular functions using the scientific disciplines of transcriptomics, proteomics, metabolomics and bioinformatics to meet the 30-day challenge. By combining an immense amount of data gleaned from these disciplines, researchers believe it will be easier to determine the workings of a given biological or chemical threat in a given environment.

One problem in achieving this, though, is the fact that the field of metabolomics isn’t as well-developed as other scientific disciplines. However, Dr. Vertes and his team at GW recently developed the Laser Ablation Electrospray Ionization (LAESI) technique, which allows researchers to more quickly and effectively learn the chemical composition of a biological sample. The technique was licensed to Protea Biosciences Inc., which developed the commercial product— the LAESI-DP 1000 Direct Ionization System—last year.

GE Global Research, Protea Biosciences Inc., and SRI International will collaborate with GW on this project, titled, “New Tools for Comparative Systems Biology of Threat Agent Action Mechanisms.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
How the Brain Recognizes Faces
Machine-learning system spontaneously reproduces aspects of human neurology.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
NVIDIA Awards $400k to Trailblazers in Cancer Research
NVIDIA Foundation furthers research that could lead to new and more targeted treatments with investments.
Computers Learn to Recognize Molecules That Can Enter Cells
Researchers discover peptides with antimicrobial properties, but also that many known human proteins also had this ability.
Big Data for Infectious Disease Surveillance
NIH-led effort examines use of big data from health records and other digital sources for uses in infectious disease surveillance.
Clinical Screening Test for Gut Health Developed
uBiome has created an entirely new approach to support the clinical diagnosis of gut health conditions.
Computational Tool May Speed Drug Discovery
Scientists are able to see beyond static images of proteins with the help of a new computational tool.
Scientists Develop a Novel Method to Benchmark and Improve the Performance of Protein Measurement Techniques
A wide range of laboratories around the world are benefiting from this work, which enables researchers to analyze or compare the results of quantitative proteomics assays in a standardized way.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!