Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Human Proteome Project Uncovers 193 Proteins Not Known to Exist

Published: Thursday, May 29, 2014
Last Updated: Thursday, May 29, 2014
Bookmark and Share
The team of international researchers reports the identification of 193 novel proteins that came from regions of the genome not predicted to code for proteins.

Striving for the protein equivalent of the Human Genome Project, an international team of researchers has created an initial catalog of the human “proteome,”or all of the proteins in the human body. In total, using 30 different human tissues, the team identified proteins encoded by 17,294 genes, which is about 84 percent of all of the genes in the human genome predicted to encode proteins.

In a summary of the effort, to be published May 29 in the journal Nature, the team also reports the identification of 193 novel proteins that came from regions of the genome not predicted to code for proteins, suggesting that the human genome is more complex than previously thought. The cataloging project, led by researchers at The Johns Hopkins University and the Institute of Bioinformatics in Bangalore, India, should prove an important resource for biological research and medical diagnostics, according to the team’s leaders.

“You can think of the human body as a huge library where each protein is a book,” says Akhilesh Pandey, M.D., Ph.D., a professor at the McKusick-Nathans Institute of Genetic Medicine and of biological chemistry, pathology and oncology at The Johns Hopkins University and the founder and director of the Institute of Bioinformatics. “The difficulty is that we don’t have a comprehensive catalog that gives us the titles of the available books and where to find them. We think we now have a good first draft of that comprehensive catalog.”

While genes determine many of the characteristics of an organism, they do so by providing instructions for making proteins, the building blocks and workhorses of cells, and therefore of tissues and organs. For this reason, many investigators consider a catalog of human proteins — and their location within the body — to be even more instructive and useful than the catalog of genes in the human genome.

Studying proteins is far more technically challenging than studying genes, Pandey notes, because the structures and functions of proteins are complex and diverse. And a mere list of existing proteins would not be very helpful without accompanying information about where in the body those proteins are found. Therefore, most protein studies to date have focused on individual tissues, often in the context of specific diseases, he adds.

To achieve a more comprehensive survey of the proteome, the research team began by taking samples of 30 tissues, extracting their proteins and using enzymes like chemical scissors to cut them into smaller pieces, called peptides. They then ran the peptides through a series of instruments designed to deduce their identity and measure their relative abundance.

“By generating a comprehensive human protein dataset, we have made it easier for other researchers to identify the proteins in their experiments,” says Pandey. “We believe our data will become the gold standard in the field, especially because they were all generated using uniform methods and analysis, and state-of-the-art machines.”

Among the proteins whose data patterns have been characterized for the first time are many that were never predicted to exist. (Within the genome, in addition to the DNA sequences that encode proteins, there are stretches of DNA whose sequences do not follow a conventional protein-coding gene pattern and have therefore been labeled “noncoding.”) The team’s most unexpected finding was that 193 of the proteins they identified could be traced back to these supposedly noncoding regions of DNA.

“This was the most exciting part of this study, finding further complexities in the genome,” says Pandey. “The fact that 193 of the proteins came from DNA sequences predicted to be noncoding means that we don’t fully understand how cells read DNA, because clearly those sequences do code for proteins.”

Pandey believes that the human proteome is so extensive and complex that researchers’ catalog of it will never be fully complete, but this work provides a solid foundation that others can reliably build upon.

Authors of the report include Min-Sik Kim and others from the Johns Hopkins University School of Medicine, Harsha Gowda and others from the Institute of Bioinformatics, and others from several other institutions.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
An Innovative Algorithm to Decipher How Drugs Work Inside the Body
Researchers at Columbia University Medical Center (CUMC) have developed a computer algorithm that is helping scientists see how drugs produce pharmacological effects inside the body.
How do Networks Shape the Spread of Disease and Gossip?
A team of mathematicians from Oxford University, University of North Carolina at Chapel Hill, and Rutgers University used a set of mathematical rules to encode how a contagion spreads, and then studied the outcomes of these rules.
AncestryDNA and Calico to Research the Genetics of Human Lifespan
Collaboration will analyze family history and genetics to facilitate development of cutting-edge therapeutics.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!