Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

FluxTransgenics: a Flexible LIMS-based Tool for Management of Plant Transformation Experimental Data

Published: Tuesday, July 01, 2014
Last Updated: Monday, June 30, 2014
Bookmark and Share
Instituto de Ciências Exatas Universidade Federal de Minas Gerais develops LIMS and tools for GMOs

The production and commercial release of Genetically Modified Organisms (GMOs) are currently the focus of important discussions. In order to guarantee the quality and reliability of their trials, companies and institutions working on this subject must adopt new approaches on management, organization and recording of laboratory conditions where field studies are performed.

Computational systems for management and storage of laboratory data known as Laboratory Information Management Systems (LIMS) are essential tools to achieve this.

Results: In this work, researchers at the Instituto de Ciências Exatas Universidade Federal de Minas Gerais used the SIGLa system - a workflow based LIMS as a framework to develop the FluxTransgenics system for a GMOs laboratory of Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Maize and Sorghum (Sete Lagoas, MG - Brazil). A workflow representing all stagesof the transgenic maize plants generation has been developed and uploaded in FluxTransgenics.This workflow models the activities involved in maize and sorghum transformation using theAgrobacterium tumefaciens method.

By uploading this workflow in the SIGLa system, the Fluxtransgenics was created, a complete LIMS for managing plant transformation data.

Conclusions: FluxTransgenics presents a solution for the management of the data produced by a laboratory of genetically modified plants that is efficient and supports different kinds of information. Its adoption will contribute to guarantee the quality of activities and products in the process of transgenic production and enforce the use of Good Laboratory Practices (GLP). The adoption of the transformation protocol associated to the use of FluxTransgenics has made it possible to increase productivity by at least 300%, increasing the efficiency of the experiments from between 0.5 and 1 percent to about 3%.

This has been achieved by an increase in the number of experiments performed and a more accurate choice of parameters, all of which have been made possible because it became easier to identify which were the most promising next steps of the experiments. The FluxTransgenics system is available for use by other laboratories, and the workflows that have been developed can be adapted to other contexts.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
UEA Research Could Help Build Computers From DNA
New research from the University of East Anglia could one day help build computers from DNA.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Preserving Fleeting Digital Information with DNA
A team has demonstrated that DNA they encapsulated can preserve information for at least 2,000 years, and they’re now working on a filing system to make it easier to navigate.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!