Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Use ‘Big Data’ Approach to Map the Relationships Between Human and Animal Diseases

Published: Thursday, July 17, 2014
Last Updated: Thursday, July 17, 2014
Bookmark and Share
EID2 database used to prevent and tackle disease outbreaks around the globe.

Researchers at the University of Liverpool are building the world's most comprehensive database describing human and animal pathogens, which can be used to prevent and tackle disease outbreaks around the globe.

The Enhanced Infectious Diseases (EID2) database has been developed by the Liverpool University Climate and Infectious Diseases of Animals (LUCINDA) team and is funded by a BBSRC Strategic Tools and Resources Development Fund grant.

Effectively mapping the relationships between human and animal diseases and their hosts, disease-causing pathogens and the ways in which pathogens are transmitted can offer huge benefits when it comes to knowing what the disease risks are in a population or geographical area, and how best to manage and eliminate them.

The EID2 team realized that there was a potential treasure trove of data already available in the scientific literature and in pre-existing databases, which was just waiting to be mined for useful insights - a 'Big Data' approach. 'Big Data' is about utilizing large datasets which may already have been collected, but which may be unstructured, and not fit into a conventional data-frame, by using often high performance and/or complex computing technologies. The emphasis on Big Data has increased recently because people have realized that the data that they have collected routinely, if used cleverly, can contain much more useful and potentially extra information than previously thought.

By using openly accessible information in a new way, data from EID2 has been used in work to trace the history of human and animal diseases, to predict the effects of climate change on pathogens, to produce maps of which diseases are most likely in some areas and to categorize the complex relationships between human and animal carriers and hosts of numerous pathogens.

Epidemiologist Dr Marie McIntyre, one of the EID2 team, said: "The database is matchless in scale, and has the capacity to hold data on all known human and animal pathogens, when detailed information becomes available."

"We use largely automated procedures to collate data on human and animal pathogens: where, when, and in which hosts there is evidence of their occurrence.

"After scientists have sequenced part or all of a pathogen's DNA or RNA, they usually upload the sequence to public databases, and include information (called metadata) on where, when and from which host the pathogen was obtained.

"EID2 is unique in extracting the information on pathogens from this metadata and as there are already tens of millions of sequence uploads to look at, and millions more are added every year, EID2 has the capacity to become a comprehensive, definitive source of pathogen and disease information.

"In addition, the sequence data is supplemented with information from the NCBI's database of scientific publications, PubMed. The procedures used for identifying the hosts in which pathogens occur, and where they occur, are objective, and the information the EID2 contains can be regularly updated and improved as more detailed information becomes available."

All together there are more than 60 million pieces of data that have been brought together for EID2, with new information added all the time. The database is open-access, allowing registered researchers to use it, and the data can be manipulated in lots of ways to help scientists to tackle numerous questions.

Dr McIntyre said: "EID2 is useful because it gives access to sets of information on infectious pathogens which have, until now, been difficult to acquire. For example, it describes all of the known pathogens of a host species, and all of the hosts of a pathogen species. It can generate all of the recorded pathogens in a specific country or region, or all of the pathogens of a certain host in a specific country. It gives instant access to the raw data from which this information is built. It also allows the distribution of pathogens (and hosts) to be mapped."

This disease mapping is one of the most important areas where EID2 can be a valuable tool.

Research has shown that only four percent of clinically-important diseases in humans have been geographically mapped, despite half having a strong rationale for mapping.

Because EID2 can pull together novel data sources, it can quickly and accurately map diseases, and because it isn't limited as to which pathogens and hosts it can describe, it has the potential for large-scale global mapping of animal and crop diseases in the same way as is currently being undertaken for human and some animal diseases.

This can produce country-by-country, or even county-by-county, profiles of the factors affecting disease, for example factoring in prevailing climate conditions, meaning regions can best prepare to avert or manage outbreaks of emerging infections.

Dr McIntyre added: "A further valuable data provision for the EID2 is in quantifying the interactions between pathogens and their hosts using approaches such as network analysis. This is important because, for example, we know that humans originally acquired about 60% of our pathogens from animals, but we don't know which animals. Nor do we know where those animals got their pathogens from. Once we have a clear picture of the pathogen species found in different domestic and wild animal hosts, we will be able to study the possible routes by which pathogens make it into human populations.

"Is a new pathogen of, say, mice going to reach humans because they interact with us in our houses, or will it be via the cats that eat them? This kind of information is ordinarily very difficult to acquire because it requires knowledge of which hosts are affected by diseases and vice-versa, but also how often these infection events occur, or if they have ever occurred."

The EID2 data is already being used to contribute to work on emerging and zoonotic infections at a Health Protection Research Unit (HPRU) at the University of Liverpool, which was created at the end of 2013, a national centre of excellence in multidisciplinary research to protect the nation's health.

In fact the potential of the EID2 data for analysis is incredibly wide ranging, and a host of exciting ideas are being considered by the Liverpool team. Among these are plans to use data for risk analysis, predicting where and in which species certain diseases are most likely to occur, and producing estimates of where diseases can occur based on environmental data such as climate, demographics and vegetation.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

BBSRC Shows UK Commitment to European Bioinformatics Agreement
BBSRC has signed an agreement that will enable maximum impact of Europe's bioscience research data.
Monday, September 09, 2013
Minister Announces UK Funding to Build World-First Synthetic Yeast
UK scientists to build a chromosome for the world's first synthetic yeast.
Friday, July 12, 2013
Researchers Pair Experiments with Computer Models to Peer into Cells
BBSRC-funded researchers have developed a new strategy that can give scientists a better insight into how complex molecular machineries function in living cells.
Wednesday, March 20, 2013
BBSRC Invests in Future of Livestock Genomics
Over £1.1M of new investment has been awarded for ARK-Genomics, with a focus on the genetics and genomics of livestock species.
Monday, January 07, 2013
UK Bioscience Sparkles with New Diamond Fellowship
UK bioscience has received a major boost following the announcement of 16 new fellowships by the Biotechnology and Biological Sciences Research Council (BBSRC) including the first ever Diamond Fellowship, so named because the post will be based at the new Research Complex at Harwell, adjacent to the Diamond Light Source in Oxfordshire - the UK national synchrotron facility.
Tuesday, July 21, 2009
Scientific News
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Firefly Protein Enables Visualization of Roots in Soil
A new imaging tool from a team led by Carnegie’s José Dinneny allows researchers to study the dynamic growth of root systems in soil, and to uncover the molecular signaling pathways that control such growth.
UEA Research Could Help Build Computers From DNA
New research from the University of East Anglia could one day help build computers from DNA.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
Preserving Fleeting Digital Information with DNA
A team has demonstrated that DNA they encapsulated can preserve information for at least 2,000 years, and they’re now working on a filing system to make it easier to navigate.
TGAC Leads Development to Diminish Threat to Vietnam’s Most Important Crop
Advanced bioinformatics capabilities for next-generation rice genomics in Vietnam to aid precision breeding.
Mass Extinctions Can Accelerate Evolution
A computer science team at The University of Texas at Austin has found that robots evolve more quickly and efficiently after a virtual mass extinction modeled after real-life disasters such as the one that killed off the dinosaurs.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!