Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Computer Model Reveals Cancer's Energy Source

Published: Tuesday, August 19, 2014
Last Updated: Tuesday, August 19, 2014
Bookmark and Share
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.

A computer model study reveals - for the first time - details of an energy-creating process vital and unique to cancer cells. The research holds promise for new interventions and for personalizing cancer treatments based on individual needs.

The findings, which will revise basic biochemistry textbooks, focused on the energy-making process in cancer cells known as the Warburg Effect.

The Cornell-led study, published July 9 in the journal eLife, revealed that some of the enzymes thought to have no effect on the Warburg Effect, in fact, play a large role: An enzyme called GAPDH influences many parts of a cancer cell’s energy-making pathway.

“Our findings open opportunities for new ways to intervene in the Warburg Effect,” said Jason Locasale, the paper’s senior author and assistant professor of nutritional sciences in Cornell’s College of Agricultural and Life Sciences. Alexander Shestov, a former senior research associate, and Xiaojing Liu, a postdoctoral fellow, both in Locasale’s lab, are the paper’s lead authors. The results also “provide glimpses into whether we have predictive capacity to discern if treatments might be working,” Locasale added.

All multicellular organisms evolved pathways that take nutrients, sugars and oxygen and make energy through respiration and chemical processes. In normal cells, this energy-making process is known as oxidative phosphorylation. But when cells evolve cancerous properties and grow uncontrollably, they instead ferment their sugars to create energy even in the presence of oxygen. This process is called aerobic glycolysis, or the Warburg Effect.

The new findings are an important step toward developing a drug that affects only fermentation and not the normal metabolism of glucose, thereby depriving cancer cells of energy. The new model lays groundwork for predicting whether treatments will be effective based on an individual’s unique metabolism.

Still, very few details have been known about the Warburg Effect. “We can now systematically perturb anything in the [computer] model and identify important components” of the Warburg Effect, Locasale said.

Dating back to work by Efraim Racker, a Cornell researcher who made seminal discoveries in the area in the 1970s, followed by advances in cancer and genetic research, it is “known now that almost every cancer gene has some capacity to induce the Warburg Effect,” making it fundamental to proliferative diseases, Locasale said.

Currently, the Warburg Effect is used in clinical practice to diagnose and monitor cancer. Doctors inject patients with radioactive glucose and then watch where it is consumed; tumors are a major source of consumption. Researchers are also exploring whether dietary interventions with less sugar and the use of diabetes drugs that lower glucose may impact the Warburg Effect to treat cancer.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Studies on Domesticated Maize Identify Genes that Evolved from Wild Ancestors
Studies identify genes that played a role in corn domestication as well as variations and similarities between domesticated maize and its wild relatives.
Wednesday, June 06, 2012
Scientific News
How the Brain Recognizes Faces
Machine-learning system spontaneously reproduces aspects of human neurology.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
NVIDIA Awards $400k to Trailblazers in Cancer Research
NVIDIA Foundation furthers research that could lead to new and more targeted treatments with investments.
Computers Learn to Recognize Molecules That Can Enter Cells
Researchers discover peptides with antimicrobial properties, but also that many known human proteins also had this ability.
Big Data for Infectious Disease Surveillance
NIH-led effort examines use of big data from health records and other digital sources for uses in infectious disease surveillance.
Clinical Screening Test for Gut Health Developed
uBiome has created an entirely new approach to support the clinical diagnosis of gut health conditions.
Computational Tool May Speed Drug Discovery
Scientists are able to see beyond static images of proteins with the help of a new computational tool.
Scientists Develop a Novel Method to Benchmark and Improve the Performance of Protein Measurement Techniques
A wide range of laboratories around the world are benefiting from this work, which enables researchers to analyze or compare the results of quantitative proteomics assays in a standardized way.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!