Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>Resources>White Papers>This White Paper
  White Papers
Scientific News
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
On Top of the Flu
Chance for advance warning in search-based tracking method.
TGAC Announces Milestone in Wheat Research
A more complete and accurate wheat genome assembly is being made available to researchers, by The Genome Analysis Centre (TGAC) on 12 November 2015.
Shedding Light on “Dark” Cellular Receptors
UNC and UCSF labs create a new research tool to find homes for two orphan cell-surface receptors, a crucial step toward finding better therapeutics and causes of drug side effects.
Is Allergy the Price We Pay for Our Immunity to Parasites?
New findings help demonstrate the evolutionary basis for allergy.
Scroll Up
Scroll Down

Bioinformatics and the Future of Medicinal Research and Clinical Practice
Bookmark and Share


The enormous advances in biological technology over the past four decades have led to a profound change in how information is processed; conceptual and technical developments in experimental and molecular biology disciplines such as genomics, transcriptomics, proteomics, metabolomics, immunomics, and countless other “omics” have resulted in a veritable sea of data with the potential to radically alter biomedicine. Yet, with this wealth of data comes a challenge, namely how to transform the data into information, the information into knowledge, and the knowledge into useful action.

Nearly coincident with the advances in biological science, and in fact rapidly outpacing such advances, has been the advent of the modern computer and the associated advances in information storage, retrieval, and processing made practical with microelectronics and informatics. The power of modern information technology is ideal for capturing and storing the huge volume of biological data being generated; however, the respective languages and concepts of biology and computer sciences have, until recently, been disparate enough to prevent the logical next step of combining the two disciplines into a more powerful tool. The discipline of bioinformatics has emerged to capture the information stored in living systems and help turn it into actionable technology. In this paper we will explore the precepts of this discipline, the tools, and the potential for the future inherent in this powerful meta-technology.

Further Information


Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos