Corporate Banner
Satellite Banner
Informatics
Scientific Community
 
Become a Member | Sign in
Home>Resources>White Papers>This White Paper
  White Papers
Scientific News
New Database for Sharing MS Clinical Trial Data
A new database containing nearly 2500 patient records from the placebo arms of nine multiple sclerosis (MS) clinical trials is now available for research by qualified investigators.
‘Precision Prevention’ for Colorectal Cancer
New risk prediction model — not yet ready for clinical use — incorporates genetic, lifestyle and environmental risk factors.
Characterizing Cancerous Genomic Variations
Tested on large tumor genomics database, REVEALER method allows researchers to connect genomics to cell function.
Uncovering Hidden Genomic Alterations that Drive Cancers
Tested on large tumor genomics database, REVEALER method allows researchers to connect genomics to cell function.
Spotting DNA Repair Genes Gone Awry
Ludwig researchers develop a two-pronged approach for identifying genes responsible for fixing DNA damage that can trigger cancer when compromised.
Interpreting “Dark Matter” DNA
Scientists at the Gladstone Institutes have invented a new way to read and interpret the human genome.
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
The Epigenetics of Childhood Cancer
Qlucore software enables researchers to more easily study the genetic influences behind childhood cancer.
Mining Whole Exome Data to Improve Cancer Therapies
New tool interprets the raw data of whole exome tumor sequencing and then matches the cancer’s unique genetics to FDA-approved targeted treatments.
Pittcon 2016: Accelerating Innovation And Enhancing Productivity With Technology
Collaboration and externalization of data highlight evolving lab operations.
Scroll Up
Scroll Down

Bioinformatics and the Future of Medicinal Research and Clinical Practice
Bookmark and Share

DVC, LLC

The enormous advances in biological technology over the past four decades have led to a profound change in how information is processed; conceptual and technical developments in experimental and molecular biology disciplines such as genomics, transcriptomics, proteomics, metabolomics, immunomics, and countless other “omics” have resulted in a veritable sea of data with the potential to radically alter biomedicine. Yet, with this wealth of data comes a challenge, namely how to transform the data into information, the information into knowledge, and the knowledge into useful action.

Nearly coincident with the advances in biological science, and in fact rapidly outpacing such advances, has been the advent of the modern computer and the associated advances in information storage, retrieval, and processing made practical with microelectronics and informatics. The power of modern information technology is ideal for capturing and storing the huge volume of biological data being generated; however, the respective languages and concepts of biology and computer sciences have, until recently, been disparate enough to prevent the logical next step of combining the two disciplines into a more powerful tool. The discipline of bioinformatics has emerged to capture the information stored in living systems and help turn it into actionable technology. In this paper we will explore the precepts of this discipline, the tools, and the potential for the future inherent in this powerful meta-technology.

Further Information


SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!