Satellite Banner
Scientific Community
Become a Member | Sign in
Home>Resources>White Papers>This White Paper
  White Papers
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Supercomputers Could Improve Cancer Diagnostics
Researchers push the boundaries of cancer research through high-performance computing to map the human immunone.
Systems Medicine – The Future Approach to Diseases
Review give insight into the future of understanding the body and its mechanisms through systems medicine.
Genetic Signature Linked to Cancer Prognosis Identified
The results of the analysis of 8,161 tissue samples could in the future help clinicians decide how best to treat a patient as well as aid the development of new targeted treatments.
Mapping the Human Immune System
Researchers try to harness supercomputers to create the first map of the human immune system.
Microsatellites Linked to Cancer
DNA repeat stretches, called microsatellites, play a greater role in cancer progression and survival that previously thought.
Universal Flu Vaccine Designed by Scientists
An international team of scientists have designed a new generation of universal flu vaccines to protect against future global pandemics that could kill millions.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
NCI Collaborates with Multiple Myeloma Research Foundation
NCI collaborates with MMRF to incorporate genomic and clinical data into NCI Genomic Data Commons database.
Scroll Up
Scroll Down

Bioinformatics and the Future of Medicinal Research and Clinical Practice
Bookmark and Share


The enormous advances in biological technology over the past four decades have led to a profound change in how information is processed; conceptual and technical developments in experimental and molecular biology disciplines such as genomics, transcriptomics, proteomics, metabolomics, immunomics, and countless other “omics” have resulted in a veritable sea of data with the potential to radically alter biomedicine. Yet, with this wealth of data comes a challenge, namely how to transform the data into information, the information into knowledge, and the knowledge into useful action.

Nearly coincident with the advances in biological science, and in fact rapidly outpacing such advances, has been the advent of the modern computer and the associated advances in information storage, retrieval, and processing made practical with microelectronics and informatics. The power of modern information technology is ideal for capturing and storing the huge volume of biological data being generated; however, the respective languages and concepts of biology and computer sciences have, until recently, been disparate enough to prevent the logical next step of combining the two disciplines into a more powerful tool. The discipline of bioinformatics has emerged to capture the information stored in living systems and help turn it into actionable technology. In this paper we will explore the precepts of this discipline, the tools, and the potential for the future inherent in this powerful meta-technology.

Further Information


SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos