Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

ATARiS Informatics Platform Hits the Jackpot

Published: Wednesday, May 22, 2013
Last Updated: Wednesday, May 22, 2013
Bookmark and Share
ATARiS is one of several tools developed at the Broad Institute to precisely tune in to the signals within noisy datasets.

Listening to data isn’t easy. Massive amounts of data are often messy and complicated. But somewhere within the cacophony, information can harmonize and produce the sweet sound of discovery – if you have the right tools with which to hear it.

ATARiS is one of several tools developed at the Broad Institute to precisely tune in to the signals within datasets. The original idea for ATARiS came about a few years ago when members of Jill Mesirov’s computational biology and bioinformatics group, Bill Hahn's cancer biology group, and the Broad RNAi Platform were trying to address a common problem from the world of RNAi research. RNAi – short for RNA interference – allows researchers to “turn off” a gene or decrease that gene’s activity. Ideally, every gene in the genome would be paired with an RNAi reagent that could turn it – and only it – off. Instead, most RNAi reagents also disrupt other genes (a frustrating phenomenon known as off-target effects). Without a way to easily isolate on-target effects, the power of RNAi wanes.

RNAi is a critical tool for many projects at the Broad and beyond, including Project Achilles. This project – a joint effort between researchers at the Dana-Farber Cancer Institute and the Broad – seeks to pinpoint cancer’s most important weaknesses. To do so, researchers use RNAi to turn off genes in hundreds of cell lines. About 50,000 RNAi reagents have been used to target 11,000 of the 21,000 human genes (about five RNAi reagents for each of these genes) in order to see which genes are critical for cancer’s survival. These crucial genes could become the targets of drugs in the future.

“What we want to do is tune in on a specific target effect,” says Diane Shao, a graduate student in senior associate member Bill Hahn’s lab at the Broad Institute and Dana-Farber Cancer Institute. However, while researchers can pick out an RNAi reagent that seems particularly adept at killing cancer cells, they can’t be entirely certain which of its effects – on-target or off-target – are bringing about the desired result.

ATARiS helps cut through the noise from the multitude of variables and values. The computational method looks for patterns across multiple samples, assessing the performance of individual RNAi reagents to target specific genes. This allows researchers to determine which gene – rather than which RNAi reagent – is most of interest.

“ATARiS makes RNAi data more accessible,” says Aviad Tsherniak, a computational biologist in Jill Mesirov’s lab at the Broad and the key architect of ATARiS. “It simplifies it and standardizes it, and it makes the data compatible with other kinds methods.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Breaking Through the Barriers to Lab Innovation
Here we examine the drivers behind the move for greater innovation, the challenges and current trends in laboratory informatics, and the tools that can be used to break these barriers.
Researchers Construct Atomic Model of an Immature Retrovirus
Using molecular modeling and large-scale molecular dynamic simulation, Beckman researchers have constructed an atomic model of an immature retrovirus.
New Mathematics Advances the Frontier of Macromolecular Imaging
Berkeley Lab’s M-TIP solves the reconstruction problem for fluctuation X-ray scattering.
Exploring Living cells
JPK reports the exploration of living cells using nanoscale and single molecule techniques through the application of scanning probe microscopy.
The Perfect Partnership: Research & Industry; Software & Instrumentation. It really starts to come together at ASMS 2015
Collaboration and knowledge-sharing were evident everywhere: on the bus, in the hallways and in the bars. This article aims to capture this theme and share with you some of the fruits of this coming together of science and industry.
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Antibody Pries Loose Bacteria’s Grip
Study finds novel method of improving antibody efficacy.
CLAIRE Brings Electron Microscopy to Soft Materials
CLAIRE works by essentially combining the best attributes of optical and scanning electron microscopy into a single imaging platform.
Sample & Analysis Tracking in Oncogenomic Experiments
The study outlines Onco-STS, a web-based laboratory information management system for sample and analysis tracking in oncogenomic experiments.
Pittcon Announces Wide Variety of Short Courses
Courses range from beginner and intermediate to advanced levels.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos