Corporate Banner
Satellite Banner
Technology Networks Header
Saturday, October 25, 2014
Technology Networks
 
Register | Sign in
Home Page>Posters

  Posters

Multifunctional, “Smart”, Polymeric Microfluidics Fabricated by Plasma Processing: Applications in Capillary Filling, and Passive Superhydrophobic Valving
Katerina Tsougeni, Dimitris Papageorgiou, Angeliki Tserepi and Evangelos Gogolides*

We demonstrate a mass-production amenable technology for fabrication, surface modification and multifunction integration in plastic, disposable microfluidic devices, namely direct lithography on the plastic substrate followed by polymer plasma etching, and if desired by selective plasma deposition. We apply the plasma processing technology to fabricate polymeric microfluidics in Poly(methyl methacrylate) (PMMA) and Poly(ether ether ketone) (PEEK). Our approach proposes “smart” multifunctional mi

More information
In-plane detection of fluorescence signals in microfludic lab-on-chip flow cytyometry
James Hoyland, Casper Kunstmann-Olsen

Several means of extracting fluorescence signals from flowing cell suspensions in a single plane are examined. Simple microfluidic flow cytometer structures incorporating lateral hydrodynamic focusing were molded in PDMS. Several geometries for embedding optical fibers and custom molded waveguides into the same structure were compared. Improvement in light yield is examined with molded cylindrical lenses and by using channels filled with high refractive index polymers as waveguides.

More information
Gene List Significance Index (GLSI) improves our method High Performance Chip Data Analysis dramatically - Quantifying the quality of different lists of analyzed significant genes
Joachim R. Grün (1), Andreas Grützkau (1), Marta Steinbrich-Zöllner (3) Thomas Häupl (2), Ria Baumgrass (1), Jochen Sieper (3), Gerd-Rüdiger Burmester (2), Andreas Radbruch (1)

Our gene expression profiling strategy High Performance Chip Data Analysis (HPCDA) was improved with a method for quantifying the quality of different gene lists (GLs) with the new Gene List Significance Index (GLSI). With GLSI it is possible to decide which of two different extracted GLs has highest fraction of true positives, of high fold change or low p-value genes. With GLSI we could empirically optimize HPCDA-Score for ranking genes.

More information
PROTEOME WIDE PLASMA PROFILING USING ANTIBODY SUSPENSION BEAD ARRAYS
Maja Neiman, Ulrika Igel, Burcu Ayoglu, Kimi Drobin, Mathias Uhlén, Peter Nilsson and Jochen M. Schwenk

A newly developed antibody suspension bead array assay allows for a systematic and high-throughput plasma profiling. This microtiter based assay uses antibody-coupled beads for a multiplexed analysis of minute amounts of directly labelled samples. The key requirement of a?nity reagents towards all human proteins is met by the Human Protein Atlas project.

More information
Evaluation of microfluidic digital PCR for the detection of cancer biomarkers
Rebecca Sanders, Claire Bushell, Carole Foy, Daniel J. Scott

dPCR is achieved by sample partitioning prior to PCR amplification such that each reaction chamber contains one copy or less of target DNA. This dilution becomes the limiting factor and an accurate target molecule count is achievable. This study evaluates dPCR’s quantitative capabilities and investigates parameters influencing copy number quantification, using the Fluidigm Biomark instrument. Biomark technology combines dPCR theory with a microfluidics platform.

More information
Identification of differentially expressed transcripts associated to apomixis in B r a c h ia r ia using cDNA microarrays
Eduardo Gorrón 1 , 2, Diana Bernal 1, Silvia Restrepo & Joe Tohme

Apomixis is a trait which allows flowering plants to produce seeds by asexual ways. Molecular mechanisms behind this phenomenon are poorly understood. We used cDNA microrrays coupled to substractive libraries to find genes related to apomixis in Brachiaria. Genes related to meiosis and cell division, and some putative transcription factors, were overexpressed in sexual plants. It may indicate that apomixis could be caused by downregulation of these genes.

More information
Design of an innovative microfluidic system to study chemotactic transmembranal migration of leukocytes
Elena Bianchi (a)(b)(c), Elwin Vrouwe (b) , Laganà Katia (a) , Margherita Cioffi (a), Marko Blom (b), Bob Lansdorp (b), Gabriele Dubini (a)

Aim of this project is to develop a versatile and highthroughput microdevice, to be employed in studies of leukocytic chemotaxis, shear stress dependent.

More information
Perfecting Bacterial Tumor Treatment using Microfluidic Bioreactors
Bhushan J. Toley, Brett M. Babin, Colin L. Walsh, Neil S. Forbes

Engineered bacteria provide a great opportunity to overcome the limitations of current cancer chemotherapeutics. We have developed microfluidic continuous flow-through devices as in-vitro models of tumor tissue and used them to quantify therapeutic efficacies of bacterial strains.

More information
A PDMS Sample Pre-treatment Device for the Optimization of Electrokinetic Manipulations of Serum
Tim Abram, Dr. David Clague

A PDMS “sample pretreatment” device has been fabricated in order to selectively tune key biological sample parameters which will optimize the sample for subsequent electrokinetic manipulations. We have shown that a raw sample can be homogeneously combined with specific buffers in a DC pulse micromixer in under 1.5 seconds.

More information
<< 3 4 5 6 7 8 9 >>
Showing Results 51 - 60 of 134
Scientific News
New 'Lab-on-a-Chip' Could Revolutionize Early Diagnosis of Cancer
Faster result times, reduced costs, minimal sample demands and better sensitivity of analysis.
How Fluid Flow Influences Neuron Growth
A University of Texas at Arlington team exploring how neuron growth can be controlled in the lab and, possibly, in the human body has published a new paper in Nature Scientific Reports on how fluid flow could play a significant role.
‘Tissue Chip’ to Screen Neurological Toxins
UW-Madison team are developing a faster, more affordable way to screen for neural toxins.
Modular Components Make Building 3-D “Labs-on-a-Chip” a Snap
New building blocks take microfluidics from flat to 3-D quickly and easily.
NIH Funds Next Phase of Tissue Chip for Drug Screening Program
Scientists will integrate chips mimicking human organ functions into full body system to evaluate drugs.
Airway Muscle-On-A-Chip Mimics Asthma
Tissue-level model of human airway musculature could pave way for patient-specific asthma treatments.
New Chip Promising For Tumor-Targeting Research
The new system, called a tumor-microenvironment-on-chip device, will allow researchers to study the complex environment surrounding tumors and the barriers that prevent the targeted delivery of therapeutic agents.
Gene Expression Patterns in Pancreatic CTCs Revealed
Distinct patterns of gene expression in several groups of CTCs were identified, including significant differences from the primary tumor that may contribute to the ability to generate metastases and prove to be targets for improved treatment of the deadly tumor.
Blood Cleanser for Sepsis
Dialysis-like ‘biospleen’ quickly filters bacteria, fungi and toxins.
Stanford Engineers Aim to Connect the World with Ant-sized Radios
Costing just pennies to make, tiny radios-on-a-chip are designed to serve as controllers or sensors for the 'Internet of Things.'
Scroll Up
Scroll Down
Skyscraper Banner
Skyscraper Banner
Follow TechNetcom1 on Twitter
Technology Networks Ltd. on LinkedIn
Go to LabTube.tv
Go to Lab-on-a-Chip RSS Feed