Corporate Banner
Satellite Banner
Technology Networks Header
Saturday, December 20, 2014
Technology Networks
 
Register | Sign in
Home Page > Videos > Mapping Chemical Gradients in Living Tissue in Space and Time Using Microfluidics
  Videos

Return

Mapping Chemical Gradients in Living Tissue in Space and Time Using Microfluidics
SelectBio

Chemical gradients drive many processes in biology, ranging from nerve signal transduction to ovulation. At present, microscopy is the primary tool used to understand these gradients. Microscopy has provided many important breakthroughs in our understanding of the fundamental biology, but is limited due to the need to incorporate fluorescent molecules into biological systems. As a result, there is a need to develop tools that can measure chemical gradient formation in biological systems that do not require fluorescent modification of the targets in question, can be multiplexed to measure more than one molecule and is compatible with a variety of biological sample types, including in vitro cell cultures and ex vivo tissue slices. Work from our group on the development of microfluidic tools to measure chemical gradients in living tissue will be presented. Two separate systems are under development. The first is a microfluidic system designed to analyze metabolite and protein expression from tissue. The sampling system can resolve up to 19 different ports and can be interface with either electrochemical or fluorescence-based detection methods. Using these two detection methods, we are capable of analyzing the release of either small molecule metabolites or proteins and peptides using immunoassays. The second system uses a high-density electrode array to image release of electrochemically active metabolites like nitric oxide from live tissue slices. Electrochemical characterization of this system combined with a microfluidic system for gradient generation will be shown.

Request more information
Company product page



For access to this article, enter your email address to instantly recieve a Password Reset link.

Please enter your email address below:

Existing users please Sign In here. Don't have an account? Register Here for free access.

Don't have an account? | Register Here

Scientific News
Tailor-Made Cancer Treatments? New Cell Culture Technique Paves The Way
Technique grew cells from 73% of patients in the study, more than three times as effective as previous methods.
Predicting Sepsis
Altered white-blood-cell motion in burn patients may warn of infection.
New Advance in Cryopreservation Could Change Management of World Blood Supplies
Engineers have identified a method to rapidly prepare frozen red blood cells for transfusions.
Stanford Engineers Discover How to Record the Forensic History of Chemical Contaminations in Water
An invention called a time capsule is a tiny chemistry lab designed to take a fingerprint of contamination and also disclose when it occurred.
Wallet-Sized Labs The Next Big Thing
RMIT researchers are developing inexpensive, portable toxicology laboratories so small you could fit them in your wallet.
Up-close Look at Cancer on the Move
Microscopic view of metastasis could give insight about how to keep cancer in check.
A Medical Lab For The Home
Fraunhofer FIT demonstrates a mobile wireless system that monitors the health of elderly people in their own homes, using miniature sensors.
Detecting Prostate Cancer With a Microfluidic Device
Innovative device detects prostate cancer, kidney disease on the spot.
Hello? Sweat and a Smartphone Could Become The Hot New Health Screening
A new article highlighting UC research reveals how sweat and microfluidics can pinpoint and help dodge potential health issues for everyone from athletes to preemies.
New 'Lab-on-a-Chip' Could Revolutionize Early Diagnosis of Cancer
Faster result times, reduced costs, minimal sample demands and better sensitivity of analysis.
Scroll Up
Scroll Down
Skyscraper Banner
SELECTBIO Market Reports
LabTube - Videos for the Scientific Community
eposters - The Online Journal of Scientific Posters
Follow TechNetcom1 on Twitter
Technology Networks Ltd. on LinkedIn