Corporate Banner
Satellite Banner
Technology Networks Header
Saturday, September 20, 2014
Technology Networks
 
Register | Sign in
Home Page > Videos > Mapping Chemical Gradients in Living Tissue in Space and Time Using Microfluidics
  Videos

Return

Mapping Chemical Gradients in Living Tissue in Space and Time Using Microfluidics
SelectBio

Chemical gradients drive many processes in biology, ranging from nerve signal transduction to ovulation. At present, microscopy is the primary tool used to understand these gradients. Microscopy has provided many important breakthroughs in our understanding of the fundamental biology, but is limited due to the need to incorporate fluorescent molecules into biological systems. As a result, there is a need to develop tools that can measure chemical gradient formation in biological systems that do not require fluorescent modification of the targets in question, can be multiplexed to measure more than one molecule and is compatible with a variety of biological sample types, including in vitro cell cultures and ex vivo tissue slices. Work from our group on the development of microfluidic tools to measure chemical gradients in living tissue will be presented. Two separate systems are under development. The first is a microfluidic system designed to analyze metabolite and protein expression from tissue. The sampling system can resolve up to 19 different ports and can be interface with either electrochemical or fluorescence-based detection methods. Using these two detection methods, we are capable of analyzing the release of either small molecule metabolites or proteins and peptides using immunoassays. The second system uses a high-density electrode array to image release of electrochemically active metabolites like nitric oxide from live tissue slices. Electrochemical characterization of this system combined with a microfluidic system for gradient generation will be shown.

Request more information
Company product page



For access to this article, enter your email address to instantly recieve a Password Reset link.

Please enter your email address below:

Existing users please Sign In here. Don't have an account? Register Here for free access.

Don't have an account? | Register Here

Scientific News
Blood Cleanser for Sepsis
Dialysis-like ‘biospleen’ quickly filters bacteria, fungi and toxins.
Stanford Engineers Aim to Connect the World with Ant-sized Radios
Costing just pennies to make, tiny radios-on-a-chip are designed to serve as controllers or sensors for the 'Internet of Things.'
Lab on a Breathing Chip
Human nasal epithelial cells, cultured on a microchip, react to air pollutants just like they would in the upper airway.
Micropumps for Lab-on-a-Chip Disease Diagnosis
Reliable, inexpensive, programmable pumps could help make the diagnosis of many global life-threatening diseases easy and affordable.
Novel Chip-based Platform Could Simplify Measurements of Single Molecules
A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform.
Ingested Nanoparticles May Damage Liver
Although nanoparticles in food, sunscreen and other everyday products have many benefits, researchers from Cornell are finding that at certain doses, the particles might cause human organ damage.
Single-Cell Analysis Holds Promise for Stem Cell and Cancer Research
UCSF researchers use microfluidic technology to probe human brain development.
Researchers Invent Nanotech Microchip to Diagnose Type-1 Diabetes
The cheap, portable, microchip-based test could speed up diagnosis and enable studies of how the disease develops.
Revealing the Role of “Precocious” Dendritic Cells in Inflammatory Response
Discovery makes it possible for researchers to explore how these “precocious” cells escalate the body’s immune response when the body is under attack.
New NIST Metamaterial Gives Light a One-Way Ticket
The device could someday play a role in optical information processing and in novel biosensing devices.
Scroll Up
Scroll Down
Skyscraper Banner
Skyscraper Banner
Follow TechNetcom1 on Twitter
Technology Networks Ltd. on LinkedIn
Go to LabTube.tv
Go to Lab-on-a-Chip RSS Feed