Corporate Banner
Satellite Banner
Mass Spectrometry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

UC Davis Receives $9.3 Million Grant for Metabolomics Center

Published: Monday, September 10, 2012
Last Updated: Monday, September 10, 2012
Bookmark and Share
The new center will bring together existing UC Davis service facilities in mass spectrometry, nuclear magnetic resonance and imaging.

With a $9.3 million startup grant from the National Institutes of Health, the University of California, Davis, has announced plans to open the West Coast Metabolomics Center, a high-tech consortium of research and service laboratories that will help scientists better understand and develop more effective treatments for complex diseases like diabetes, cancer and atherosclerosis.

The facility, which will be housed within the UC Davis Genome Center, will celebrate its grand opening Oct. 8 with a mini-symposium featuring UC Davis and regional scientists, and corporate supporters.

Metabolomics is a new field that looks at the biochemical changes taking place in living cells during metabolism. The West Coast Metabolomics Center at UC Davis will use more than 30 mass spectrometers — instruments for analyzing chemical structures — to target thousands of different molecules produced in cells, allowing researchers to look at changes taking place at specific times and under specific environmental conditions.

“The NIH recognizes metabolism as a very important part of human physiology and disease processes,” said Oliver Fiehn, professor of molecular and cellular biology and director of the new center. “When you analyze metabolism, you can tell the state of the body at the onset and during the progression of diseases ranging from cardiovascular disease to cancer.”

It will help researchers throughout the western U.S. with small grants for annual pilot and feasibility studies, provide courses, statistics and bioinformatics services, and perform metabolomic analyses on a fee-for-service basis. The center is designed to be self-sustaining within five years.

One of researchers who plans to use the new center is UC Davis Professor Bruce German, who studies lipid metabolism, especially in milk production, in the Department of Food Science and Technology.

“This new center shows the effects of the university’s long-term investments into biochemistry and genomics,” German said.

Juvenile diabetes
One of the center's first big projects will be as part of a large international study, led by the NIH, to look for environmental causes of childhood diabetes. Juvenile, or Type 1 diabetes is an autoimmune disease that causes the body to destroy pancreatic cells that produce insulin, and people with the disease must inject insulin regularly in order to survive.

Called the TEDDY study — The Environmental Determinants of Type 1 Diabetes in the Young — the project will track nearly 8,000 children over a three-year period to try to identify factors such as infections, diet, stress or other conditions that may trigger the disease.

“We know that children who get Type 1 diabetes all have certain gene signatures, but most children with those same genes don’t get the disease,” Fiehn said. “Researchers now believe there’s an environmental trigger — something that activates those genes and causes the disease. Metabolomics is a way to try to identify those environmental triggers by seeing what’s happening inside the cells over time. In addition, metabolomics is a chemical screening tool that might find further environmental cues, including pollutants.”

The West Coast Metabolomics Center will analyze blood samples taken from children every three months during the study period, providing data to researchers that may help them identify a single factor or series of factors that trigger the disease. The TEDDY consortium will pay more than $1.5 million for the services provided by the new center.

Individualized medicine
Another promising aspect of metabolomics research is creating individualized treatments for people with certain diseases, or choosing the best available treatment for a patient.

Metabolomics could be used to determine the best dose of treatment for a patient. People with higher metabolisms may need higher doses of drugs than people with lower metabolisms, for example.

"Understanding metabolomics and disease response will help scientists to develop new therapeutic strategies," said Professor Ralph de Vere White, director of the UC Davis Comprehensive Cancer Center. "This metabolomics research center will allow the UC Davis Comprehensive Cancer Center to advance this exciting area in cancer research, more deeply understand underlying mechanisms, and improve treatment options for patients."

The West Coast Metabolomics Center at UC Davis has received instrumentation support from mass spectrometry equipment companies Agilent Inc. and LECO Corporation.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Could a simple saliva test detect Alzheimer's?
Researchers have presented findings suggesting that a simple, non-invasive diagnostic for Alzheimer's could be within reach.
Facebook for the Proteome
Researchers have developed a network for describing protein-protein interactions that can then be used to examine protein interactions that may have biological or clinical significance.
Researchers Reveal Elusive Molecule
A long-standing chemistry puzzle has been solved, with potential implications ranging from industrial processes to atmospheric chemistry.
‘Atomic Detectives’ Scientists that Keep us Safe from Radioactive Criminality
Stephan Richter from the JRC-Institute for Reference Materials and Measurements has examined the merits and limitations of available mass spectrometric instrumentations for nuclear safeguards applications.
MSU Scientists Uncover a ‘Funky Cofactor’
While examining the chemical reactions of bacterial cells in a lab at Michigan State University, researchers found an unusually complex molecule in a protein that completes a simple process.
Aluminum Clusters Shut Down Molecular Fuel Factory
3-D images give clues to extending catalyst life.
Chemists Design a Quantum-Dot Spectrometer
New instrument is small enough to function within a smartphone, enabling portable light analysis.
Creating Bacterial ‘Fight Clubs’ to Discover New Drugs
Creating bacterial “fight clubs” is an effective way to find new drugs from natural sources.
Informatics Tool Helps Scientists Prioritize Protein Modification Research
Researchers have developed a new informatics technology that analyzes existing data repositories of protein modifications and 3D protein structures to help scientists identify and target research on "hotspots" most likely to be important for biological function.
Iron: A Biological Element?
Study shows findings which have meaning for fields as diverse as mining and the search for life in space.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!