Corporate Banner
Satellite Banner
Mass Spectrometry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Mass Spec makes the Clinical Grade

Published: Monday, September 10, 2012
Last Updated: Monday, September 10, 2012
Bookmark and Share
Researchers from PNNL describe mass spectrometry protein assays that match sensitivity and accuracy of antibody-based clinical tests might speed drug discovery, basic biology research.

Combining two well-established analytic techniques and adding a twist identifies proteins from blood with as much accuracy and sensitivity as the antibody-based tests used clinically, researchers report this week in Proceedings of the National Academy of Sciences Early Edition online. The technique should be able to speed up development of diagnostic tests and treatments based on proteins specific to certain diseases.

The team of scientists at the Department of Energy's Pacific Northwest National Laboratory found that their technique, called PRISM, performed as accurately as standard clinical tests known as ELISAs in a head-to-head comparison using blood samples from cancer patients. The tests measure biomarkers, proteins whose presence identifies a disease or condition.

"Clinical tests have almost always used antibodies to measure biomarkers, because antibodies can provide good sensitivity," said PNNL bioanalytical chemist Wei-Jun Qian, lead author on the study. "But it often takes a year and a half to develop antibodies as tools. Antibody development is one of the bottlenecks for new biomarker studies in disease and systems biology research."

Qian, Tujin Shi, Tom Fillmore and their PNNL colleagues worked out the highly sensitive PRISM using resources at DOE's EMSL, the Environmental Molecular Sciences Laboratory on PNNL's campus. The result is a simple and elegant integration of existing technologies that solves a long-standing problem.

The Competition
Researchers have long wanted to use mass spectrometry to identify proteins of interest within biological samples. Proteins are easy to detect with mass spec, but it lacks the sensitivity to detect rare proteins that exist in very low concentrations. Scientists use antibodies to detect those rare proteins, which work like a magnet pulling a nail out of a haystack.

Antibodies are immune system molecules that recognize proteins from foreign invaders and grab onto them, which allows researchers to pull their proteins of interest out of a larger volume, concentrating the proteins in the process. Because antibodies recognize only one or a couple of proteins, researchers have made treatments and tools out of them. Drugs whose generic names end in "-mab" are antibodies, for example.

For research purposes, the modern laboratory can produce antibodies for almost any protein. But that development process is expensive and time-consuming. If you have a new biomarker to explore, it can take longer than a year just to create an antibody tool to do so.

To get around the need for an antibody, Qian and the team concentrated the proteins in their samples another way. They used a common technique called high performance liquid chromatography, usually shortened to HPLC, to make the proteins about 100 times as concentrated as their initial sample. While an excellent step, they also had to find their protein of interest in their concentrated samples.

So they sent in a spy, a protein they could detect and whose presence would tell them if they found what they were looking for.

With a potential biomarker in mind, the team made a version that was atomically "heavier." They synthesized the protein using carbon and nitrogen atoms that contain extra neutrons. The unusual atoms added weight but didn't change any other characteristics. The heavier versions are twins of the lighter proteins found within the blood, cells, or samples. Although the twins behave similarly in the analytical instruments, the heavier twin is easily found among the sample's many proteins.

After adding the heavy version to the samples, the team sent the sample through the instrument to concentrate the proteins. The instrument spit out the sample, one concentrated fraction at a time. The fraction that contained the heavy biomarker was also the fraction that contained its twin, the lighter, natural protein. From this fraction, the team could quantify the protein.

Protein Spectrum
To prove they could use PRISM this way to find very rare proteins, the team spiked blood samples from women with a biomarker called prostate specific antigen, or PSA, that only men make. The team found they could measure PSA at concentrations about 50 picograms per milliliter. While typical of the sensitivity of ELISA tests, it represents about 100 times the sensitivity of conventional mass spectrometry methods.

"This is a breakthrough in sensitivity without using antibodies," said Qian.

Then they tested PSA in samples from male cancer patients and found PRISM performed as well as ELISA. Interestingly, PRISM measured three times the amount of PSA than the ELISA assay did. This result suggests that antibody-based ELISA tests fail to measure all of the forms of the biomarker. This is likely due to the fact that antibodies don't recognize all the different forms that proteins can take, Qian said, whereas PRISM measures the total amount of protein.

In addition to its sensitivity, PRISM requires only a very small sample of blood or serum from the patient. The team used only 2 microliters of the cancer patients' sample, a volume that would easily fit inside this small printed "o".

One drawback to the technique, however, is how many biological samples can be tested at once. Researchers want to test thousands, and antibody-based methods allow such high-throughput testing. But PRISM can only test several hundred samples per study. However, with the time researchers save not developing antibodies, the technique might still put them ahead in biomarker development.

For basic biology research, Qian said the method will be useful for studying biological pathways in cases where scientists need to accurately quantify multiple different proteins.

This work was supported by the National Institutes of Health New Innovator Award and a Department of Energy Early Career Research Award to Wei-Jun Qian.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Making Metabolite Identification More Efficient
Metasense combines the industry's most-comprehensive metabolic transformation prediction with efficient analysis of LC/MS analytical measurements to identify, visualize, and report chemical biotransformations.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Rapid Retrieval of Live, Infectious Pathogens from Clinical Samples
An engineered pathogen-binding protein enables rapid isolation of infectious bacteria from joint fluids and accelerates their identification.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Detecting Fake Parmesan Cheeses
Scientists report on a way to catch adulteration of the regional artisanal products.
The Need for Speed
Evaluating MALDI-TOF as a high-throughput screening technology for the pharmaceutical industry.
Process Analysis in Real Time
With a real-time mass spectrometer developed by Fraunhofer researchers, it has become possible for the first time to analyze up to 30 components simultaneously from the gas phase and a liquid, including in-situ analysis.
Triple-Negative Breast Cancer Target Is Found
Researchers at UC Berkeley discover a target that drives cancer metabolism in triple-negative breast cancer.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!