Corporate Banner
Satellite Banner
Mass Spectrometry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Antibiotic Finds Novel Way of Sn(e)aking Across Membranes

Published: Thursday, July 04, 2013
Last Updated: Thursday, July 04, 2013
Bookmark and Share
Researchers investigating the targeting of bacteria by protein antibiotics have discovered a new mechanism by which they can snake their way into bacterial cells.

Professor Colin Kleanthous and his research group, together with colleagues in the chemistry department at the University of Oxford and at Birkbeck College, University of London, describe the snaking mechanism in their recent paper in Science (see references below).

The previously unknown process by which these protein antibiotics gain entry into bacteria could be relevant to other systems where proteins cross membranes. The work will also help studies exploring whether these antibiotics, which target closely related bacteria, have clinical potential.

The antibiotics, colicins, are part of a large family of antibacterial proteins that target the gut bacterium Escherichia coli. Similar antibiotics are produced by many other bacteria, including many pathogens, and are used to attack neighbouring bacteria competing for the same resources.

They bind to proteins on the cell surface and then assemble a complex nanomachine or 'translocon' that links the outside of the cell to the inside. Once these connections are made, the colicin is able to move into the cell where it delivers a toxic payload.

Scientists knew colicin used a protein called OmpF on the outside of the target bacteria cell as part of this process but until now, the details of how the colicin exploited OmpF were unknown.

The work from Professor Kleanthous and colleagues sheds light on the process, revealing the surprising 'snaking' mechanism.

The discovery required important technical developments in a number of areas.

One of the major advances was in mass spectrometry, in collaboration with Professor Carol Robinson and Dr Jonathan Hopper in the University of Oxford chemistry department.

"The work we've done together is really pushing the boundaries in terms of membrane protein mass spectrometry", said Professor Kleanthous. "The mass spec result was amazing - it had never been done before."

The group suspected that colicin threaded through two of OmpF's three holes, so designed a new technique sensitive enough to detect if part of the colicin molecule was occupying them.

"The mass spec approach showed that we could measure the mass of the peptide inside the holes", said Professor Kleanthous. "The peptide is only around 1% of the total mass, but we can detect this because the resolution of the technique is so good."

By engineering a mutation in colicin they were able to keep the translocon tethered in place in order to capture, purify and analyse it.

This revealed that to form the translocon colicin had indeed snaked through two of OmpF's holes.
"We found that colicin is tethered to two holes in a three-hole protein", said Professor Kleanthous. "The surprise is that the colicin not only goes into the cell by one of the holes of OmpF but also comes back out again through a second hole."

When viewed under an electron microscope the researchers saw that the threaded colicin allows another protein within the cell membrane to be held in place, making it easier to continue colicin's journey into the bacterium.

This mechanism explains how disordered proteins can burrow their way through narrow pores, as well as pass a charged signal into a cell.

Now that the group have started to piece together the molecular interactions between components of the translocon, they are keen to fill in more of the details.

"We want to find out exactly how the colicin sneaks its way in and out of OmpF and to see if this mechanism occurs in colicins that target pathogenic bacteria", said Professor Kleanthous. "We'll be focusing on all the components of the translocon, ultimately trying to assemble them in a reconstituted system in vitro."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
Accessing Metabolic Information with Mass Spec
Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples.
Unravelling the Roots of Insect’s Waterproof Coating
Researchers have identified the genes that control cuticular lipid production in Drosophila, by performing an RNAi screen and using Direct Analysis in Real Time and GC-MS.
Massive Helium Discovery a "Game Changer" for Medical Industry
A new development is gas exploration has yielded the discovery of a huge helium gas field, which could help relieve the dwindling supply.
Unidentified Spectra Detector
New algorithm clusters over 250 million spectra for analysis, such that millions of unidentified peptide sequences can be recognised.
Making Metabolite Identification More Efficient
Metasense combines the industry's most-comprehensive metabolic transformation prediction with efficient analysis of LC/MS analytical measurements to identify, visualize, and report chemical biotransformations.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!