Corporate Banner
Satellite Banner
Mass Spectrometry
Scientific Community
Become a Member | Sign in
Home>News>This Article

Antibiotic Finds Novel Way of Sn(e)aking Across Membranes

Published: Thursday, July 04, 2013
Last Updated: Thursday, July 04, 2013
Bookmark and Share
Researchers investigating the targeting of bacteria by protein antibiotics have discovered a new mechanism by which they can snake their way into bacterial cells.

Professor Colin Kleanthous and his research group, together with colleagues in the chemistry department at the University of Oxford and at Birkbeck College, University of London, describe the snaking mechanism in their recent paper in Science (see references below).

The previously unknown process by which these protein antibiotics gain entry into bacteria could be relevant to other systems where proteins cross membranes. The work will also help studies exploring whether these antibiotics, which target closely related bacteria, have clinical potential.

The antibiotics, colicins, are part of a large family of antibacterial proteins that target the gut bacterium Escherichia coli. Similar antibiotics are produced by many other bacteria, including many pathogens, and are used to attack neighbouring bacteria competing for the same resources.

They bind to proteins on the cell surface and then assemble a complex nanomachine or 'translocon' that links the outside of the cell to the inside. Once these connections are made, the colicin is able to move into the cell where it delivers a toxic payload.

Scientists knew colicin used a protein called OmpF on the outside of the target bacteria cell as part of this process but until now, the details of how the colicin exploited OmpF were unknown.

The work from Professor Kleanthous and colleagues sheds light on the process, revealing the surprising 'snaking' mechanism.

The discovery required important technical developments in a number of areas.

One of the major advances was in mass spectrometry, in collaboration with Professor Carol Robinson and Dr Jonathan Hopper in the University of Oxford chemistry department.

"The work we've done together is really pushing the boundaries in terms of membrane protein mass spectrometry", said Professor Kleanthous. "The mass spec result was amazing - it had never been done before."

The group suspected that colicin threaded through two of OmpF's three holes, so designed a new technique sensitive enough to detect if part of the colicin molecule was occupying them.

"The mass spec approach showed that we could measure the mass of the peptide inside the holes", said Professor Kleanthous. "The peptide is only around 1% of the total mass, but we can detect this because the resolution of the technique is so good."

By engineering a mutation in colicin they were able to keep the translocon tethered in place in order to capture, purify and analyse it.

This revealed that to form the translocon colicin had indeed snaked through two of OmpF's holes.
"We found that colicin is tethered to two holes in a three-hole protein", said Professor Kleanthous. "The surprise is that the colicin not only goes into the cell by one of the holes of OmpF but also comes back out again through a second hole."

When viewed under an electron microscope the researchers saw that the threaded colicin allows another protein within the cell membrane to be held in place, making it easier to continue colicin's journey into the bacterium.

This mechanism explains how disordered proteins can burrow their way through narrow pores, as well as pass a charged signal into a cell.

Now that the group have started to piece together the molecular interactions between components of the translocon, they are keen to fill in more of the details.

"We want to find out exactly how the colicin sneaks its way in and out of OmpF and to see if this mechanism occurs in colicins that target pathogenic bacteria", said Professor Kleanthous. "We'll be focusing on all the components of the translocon, ultimately trying to assemble them in a reconstituted system in vitro."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Acetaldehyde and Formaldehyde Content in Foods
Korean researchers have determined the content of the toxic and carcinogenic aldehydes, acetaldehyde and formaldehyde, in a variety of food groups.
Combining the Power of Mass Spectrometry & Microscopy
A tool that provides world-class microscopy and spatially resolved chemical analysis shows considerable promise for advancing a number of areas of study, including chemical science, pharmaceutical development and disease progression.
Increasing Vitamin D Supplementation
New study from ETH Zurich finds that elderly women should consume more vitamin D than previously recommended during the winter months.
Advancing Lithium-Ion Battery Research
The increasing number of components in a lithium-ion battery makes it essential to use a variety of analytical methods to attain complete characterization.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Fruit Fly Pheromone Flags Great Real Estate for Starting a Family
Finding could aid efforts to control mosquito-borne diseases like malaria by manipulating odorants
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos